Japan EPD Program by SuMPO Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

brother at your side

BROTHER INDUSTRIES, LTD.

4-in-1 Monochrome Laser Printer MFC-L5715DN for Europe

Functional unit JR-AI-24249E **Registration#** PCR number Per unit of product PA-590000-AI-08 System boundary PCR name Imaging input and/or output equipment final products □intermediate products Publication date 10/11/2024 Raw material acquisition - Production - Distribution Verification date 9/30/2024 - Use & maintenance - End-of-Life Verification method System certificaion Main specifications of the product Verification# JV-AI-24249E Model name: MFC-L5715DN Expiration date 9/29/2029 - Multifunction device(EP method) PCR review was conducted by: - Monochrome Approval date 9/1/2023 - Printing Speed: 48ppm (A4) Masayuki Kanzaki PCR review - Maximum paper size : A4 panel chair Sustainable Management Promotion Organization - Print/Copy/Scan/Fax/Automatic duplex printing Third party verifier* Automatic document feeding Yasuo Koseki - Product weight: 16.4kg, Packaging etc.: 4.0kg Independent verification of data & declaration in accordance with ISO14025 - Wired LAN □internal external * This product is for Europe. **Company Information** *Auditor's name is stated if system certification has been performed. Brother Industries, Ltd. inml-ecoleaf-jimukyoku@brother.co.jp https://global.brother/en Registration number : JR-AI-24249E

EcoLeaf

Type III Environmental Declaration (EPD)

Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

Registration number : JR-AI-24249E

1. Results of life cycle	impact as	ssessmen	t (LCIA)				
			0%	20% 4	.0% 60	0% 80%	% 100%
Global warming IPCC2013 GWP100a	660	kg-CO2eq	22%	1% 2%	70)%	<mark>5%</mark>
Acidification	0.49	kg-SO2eq	23%	0%2%	7	2%	<mark>3%</mark>
Resources consumption	0.022	kg-Sbeq		49%	0%0%	51%	0%
Image: Constraint of the second se							
Stage Parameter	Unit	Total	Raw material acquisition	Production	Distribution	Use & maintenance	End-of-Life
Global warming IPCC2013 GWP100a	kg-CO₂eq	6.6E+02	1.5E+02	7.5E+00	1.2E+01	4.6E+02	3.4E+01
Acidification	kg-SO ₂ eq	4.9E-01	1.1E-01	1.5E-03	1.0E-02	3.5E-01	1.5E-02
Resources consumption	kg-Sbeq	2.2E-02	1.1E-02	2.6E-05	5.0E-05	1.1E-02	8.5E-06

2. Life cycle inventory analysis (LCI)					
Parameter		Unit			
Non-renewable material resources	2.2E+01	kg			
Non-renewable energy resources	9.7E+03	MJ			
Renewable material resources	9.6E+01	kg			
Renewable primary energy	1.8E+02	MJ			
Consumption of freshwater	6.6E-01	m 3			

3. Material composition					
Material		Unit			
Steel	3.6E+00	kg			
SUS	7.0E-02	kg			
Aluminium	6.5E-02	kg			
Other metal	0.0E+00	kg			
Plastic	1.1E+01	kg			
Rubber	2.2E-01	kg			
Glass	7.1E-01	kg			
Paper and Wood	3.3E+00	kg			
Circuit board	7.5E-01	kg			
Othres	1.1E+00	kg			

5. Additional explanation

Calculation method for usage stage (Scenario) : Multifunction device(EP method), Expected use period: 5 years, Assumed usage: 345,600 sheets, Print measuring method (Pattern): ISO/IEC 19798, Printing paper is not included in the environmental impact, The applied Energy Star program version is 3.0, This product is for Europe.

6-1. Supplementary environmental information

This product and main compornents are produced in ISO 14001 certified factories.

7. Assumptions of secondary data used

Inventory Database: IDEA v2.1.3, and registered data of Japan EPD Program by SuMPO, JLCA data v1.17 are used.

8. Remarks

-

- For data quantification, please refer to PCR and Rules on quantification and declaration.

- Comparative assertion is permitted only when Rules on quantification and declaration are satisfied. (Reference URL : https://ecoleaf-label.jp/regulation/)

Registration number : JR-AI-24249E