

Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

EPSON A4 Document Scanner DS-790WN

Functional unit

Per product

System boundary

■ final products □intermediate products

Raw material acquisition, Production, Distribution, Use & maintenance, End-of-Life

Main specifications of the product

Model name:DS-790WN

Main Specifications

- Sheet-fed type, simultaneous
 - double-sided scanning (no document tray)
- For business use
- Scanning speed (A4): 45 sheets/min single-sided, 90 sheets/min double-sided
- Maximum document size: 215.9 x 6,096 mm
- Scanning resolution: 50-1,200 dpi
- Scanning method: CIS
- %This product is destined for North America

Company Information

Seiko Epson Corporation 3-3-5 Owa, Suwa-shi, Nagano-ken, Japan

Registration#	JR-AI-24438E			
PCR number	PA-590000-AI-08			
PCR name	Imaging input and/or output equipment			
Publication date	01 November 2024			
Verification date	28 October 2024			
Verification method	Product-by-product			
Verification#	JV-AI-24438			
Expiration date	27 October 2029			
PCR review was conducted by:				
Approval date	01 September 2023			
PCR review	Masayuki Kanzaki			
panel chair	(SuMPO)			
Third party verified	er*			

Yasuo Koseki

Independent verification of data & declaration in accordance with ISO14025

□internal ■external

*Auditor's name is stated if system certification has been performed.

http://www.epson.com/ http://www.epson.jp/contact/ (Japanese)

Registration number : JR-AI-24438E

SuMPO EPD Type III Environmental Declaration (EPD) Registration number : JR-AI-24438E

Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

1. Results of life cycle impact assessment (LCIA)									
			0%	20% 4	0% 60	0% 80%	% 100%		
Global warming IPCC2013 GWP100a	60	kg-CO2eq		69%		<mark>4%</mark>	18% 6%		
Acidification	0. 040	kg-SO2eq		75		– 3% 7% ~ 2% –	16%		
Resources consumption	0. 0050	kg-Sbeq			Less than 19 98%		\square		
Less than 1% Less									
stage Parameter	Unit	Total	Raw material acquisition	Production	Distribution	Use & maintenance	End-of-Life		
Global warming IPCC2013 GWP100a	kg-CO ₂ eq	6.0E+01	4.2E+01	2.1E+00	1.7E+00	1.1E+01	3.9E+00		
Acidification	kg-SO ₂ eq	4.0E-02	3.0E-02	1.7E-04	2.8E-03	6.9E-04	6.5E-03		
Resources consumption	kg-Sbeq	5.0E-03	4.9E-03	5.3E-06	7.0E-06	7.2E-05	3.3E-06		
2. Life cycle inventory analysis (LCI) 5. Additional explanation									

2. Life cycle inventory analysis (LCI)					
Parameter		Unit			
Non-renewable material resources	2.8E+00	kg			
Renewable material resources	7.7E+00	kg			

4. Waste to disposal					
Parameter		Unit			
Steel	6.2E-01	kg			
SUS	1.0E-01	kg			
Aluminum	0.0E+00	kg			
Other metal	2.1E-01	kg			
Plastic	2.3E+00	kg			
Rubber	2.1E-02	kg			
Glass	0.0E+00	kg			
Paper and wood	4.7E-01	kg			
Circuit Board	1.7E-01	kg			
Other	5.2E-01	kg			

- Product destination:North America

Calculation method (scenario) for the usage stage*

- Number of pages scanned per day: 64 pages/day (8 scans/day)

- Number of operating days per month: 20 days/month

- Number of operating days per year: 240 days

- Expected usage period: 5 years

- Total number of pages scanned: 76,800 pages (9,600 scans)/5 years

*For load calculations during the usage stage, a scenario was set up based on the above conditions that match the actual usage conditions of the user.

*Data derived from LCA and not assigned to the impact categories of LCIA

6-1. Supplementary environmental information

- This product and main comportents are produced in our ISO 14001 certified factories.

- Compliant with the International Energy Star Program Ver.3.0.It also complies with the European RoHS Directive.

7. Assumptions of secondary data used

We used IDEA v2.1.3 and SuMPO Environmental Label Program registration intensity v1.13.

8. Remarks

- For data quantification, please refer to PCR and Rules on quantification and declaration.

- Comparative assertion is permitted only when Rules on quantification and declaration are satisfied. (Reference URL : https://ecoleaf-label.jp/regulation/)