

# Japan EPD Program by SuMPO Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

# NIPPON STEEL | NIPPON STEEL CORPORATION

# Wide flange shapes



# **Functional unit**

1 t

#### System boundary

□ final products

■ intermediate products

Production Stage and optional supplementary infomation

#### Main specifications of the product

Production Site: Kansai Works\_Wakayama Area(Sakai) Main product models: Wide flange shapes Main standards: JIS G 3192 %The other available standards are listed on page 3 (8.Remarks). Shape: H

| Registration#       | JR-AJ-24049E                    |  |  |
|---------------------|---------------------------------|--|--|
| PCR number          | PA-180000-AJ-06                 |  |  |
| PCR name            | Steel products for construction |  |  |
| Publication date    | 11/29/2024                      |  |  |
| Verification date   | 11/7/2024                       |  |  |
| Verification method | Product-by-product              |  |  |
| Verification#       | JV-AJ-24049                     |  |  |
| Expiration date     | 11/6/2029                       |  |  |
| PCR review was      | conducted by:                   |  |  |
| Approval date       | e 5/10/2023                     |  |  |
| PCR review          | Yasunari Matsuno                |  |  |
| panel chair         | (Chiba University)              |  |  |

#### Third party verifier\*

Daisuke Matsui

Independent verification of data & declaration in accordance with ISO14025 and ISO21930.

□internal

external

\*Auditor's name is stated if system certification has been performed.

Registration number : JR-AJ-24049E

#### **Company Information**

## NIPPON STEEL CORPORATION

About Us:

https://www.nipponsteel.com/en/index.html Contact Us:

https://www.nipponsteel.com/en/product/contact/structuralsteel.html



# PD SuMPO EPD

ERIFIED Type III Environmental Declaration (EPD)

Registration number : JR-AJ-24049E

| Japan | EPD | Program | by SuMPO |
|-------|-----|---------|----------|
|-------|-----|---------|----------|

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

| 1. Results of life cycle impact assessment (LCIA) |                  |         |                                     |                                                                                                           |
|---------------------------------------------------|------------------|---------|-------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Stage<br>Parameter                                | [A1~A3]<br>+ [D] | [A1~A3] | Unit                                |                                                                                                           |
| Global warming IPCC2013 GWP100a                   | 1500             | 2700    | kg-CO <sub>2</sub> eq               | Table Legend<br>【A1】: Raw mterial supply                                                                  |
| Acidification                                     | 0.70             | 2.5     | kg-SO <sub>2</sub> eq               | <ul><li>[A2]: Transport to factory</li><li>[A3]: Manufacturing</li><li>[D]: Recycling potential</li></ul> |
| Photochemical ozone                               | -0.24            | 0.016   | kg-C <sub>2</sub> H <sub>4</sub> eq |                                                                                                           |

[A1~A3]:sum of [A1],[A2]and[A3](cradle to gate) [A1~A3]+[D]: sum of [A1],[A2],[A3]and [D](cradle to gate with allocation for scrap recycling)

|                                 |                                     |         |         |         |         | <br>     |
|---------------------------------|-------------------------------------|---------|---------|---------|---------|----------|
| stage<br>Parameter              | Unit                                | 【A1~A3】 | [A1]    | [A2]    | [A3]    | [D]      |
| Global warming IPCC2013 GWP100a | kg-CO <sub>2</sub> eq               | 2.7E+03 | 5.0E+02 | 1.5E+02 | 2.1E+03 | -1.2E+03 |
| Ozone layer destruction         | kg-CFC-11eq                         | 5.5E-06 | 1.6E-07 | 1.0E-09 | 5.3E-06 | -2.2E-07 |
| Acidification                   | kg-SO₂eq                            | 2.5E+00 | 5.7E-01 | 9.2E-02 | 1.9E+00 | -1.8E+00 |
| Photochemical ozone             | kg-C₂H₄eq                           | 1.6E-02 | 5.6E-03 | 1.5E-03 | 9.3E-03 | -2.6E-01 |
| Eutrophication                  | kg-PO <sub>4</sub> <sup>3-</sup> eq | 5.2E-02 | 1.2E-05 | 9.1E-13 | 5.2E-02 | -2.2E-02 |

| 2. Life cycle inventory analysis (LCI) |          |      |  |
|----------------------------------------|----------|------|--|
| Parameter                              |          | Unit |  |
| Non-renewable material resources       | 8.9E+02  | kg   |  |
| Non-renewable energy resources         | 3.0E+04  | MJ   |  |
| Renewable material resources           | 1.4E+03  | kg   |  |
| Renewable primary energy               | -9.5E+02 | MJ   |  |
| Consumption of freshwater              | 3.9E+00  | m³   |  |

| 3. Material composition |        |      |  |
|-------------------------|--------|------|--|
| Material                |        | Unit |  |
| iron [Fe]               | ≧94.96 | %    |  |
| carbon [C]              | ≦0.26  | %    |  |
| silicon [Si]            | ≦0.65  | %    |  |
| manganese [Mn]          | ≦1.70  | %    |  |
| phosphorus [P]          | ≦0.05  | %    |  |
| sulfur [S]              | ≦0.05  | %    |  |
| copper [Cu]             | ≦0.60  | %    |  |
| chrominium [Cr]         | ≦0.75  | %    |  |
| nickel [Ni]             | ≦0.50  | %    |  |
| molybdenum [Mo]         | ≦0.15  | %    |  |
| niobium [Nb]            | ≦0.05  | %    |  |
| vanadium [V]            | ≦0.15  | %    |  |
| titanium [Ti]           | ≦0.04  | %    |  |
| nitrogen [N]            | ≦0.03  | %    |  |
| aluminium [Al]          | ≦0.06  | %    |  |

| 4. Waste to disposal |          |      |
|----------------------|----------|------|
| Parameter            |          | Unit |
| Hazardous waste      | 0.00E+00 | kg   |
| Non-hazardous waste. | 1.10E+00 | kg   |

\*Data derived from LCA and not assigned to the impact categories of LCIA

# 5. Additional explanation

 Each LCI includes allocation for scrap recycling as an optional supplementary information(D) at table.1.
Recycling rate (RR) used in this calculation is
93.7%(calculated based on JIS Q 20915 and using Japan data in 2022 from Japan Iron and Steel Federation and Japan Steel Can Recycling Association).

2. The transportation scenario for raw materials follows the PCR.

3. Each item (expect iron) in table 3 is the maximum value of all product standards covered by this EPD. However, the iron content in each product is never less than 94.96%, and the contents of other components are adjusted.

4. Primary data collected in 2022. The source of the unit power consumption is the average of 10 electric power suppliers of Japan in 2014.

5. For the transport of metallurgical coal, the amount is double counted due to the characteristics of the inventory database on which this estimation is based.



### Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

6-1. Supplementary environmental information Kansai Works\_Wakayama Area is certified to ISO 14001.

| 6-2. Regulated hazardous substances |           |                                       |  |  |
|-------------------------------------|-----------|---------------------------------------|--|--|
| Substance                           | CAS No.   | Reference to standards or regulations |  |  |
| manganese [Mn]                      | 7439-96-5 | Industrial Safety and Health Act      |  |  |
| copper [Cu]                         | 7440-50-8 | Industrial Safety and Health Act      |  |  |
| chrominium [Cr]                     | 7440-47-3 | Industrial Safety and Health Act      |  |  |
| nickel [Ni]                         | 7440-02-0 | Industrial Safety and Health Act      |  |  |
| molybdenum [Mo]                     | 7439-98-7 | Industrial Safety and Health Act      |  |  |
| niobium [Nb]                        | 7440-03-1 | Industrial Safety and Health Act      |  |  |
| vanadium [V]                        | 7440-62-2 | Industrial Safety and Health Act      |  |  |
| titanium [Ti]                       | 7440-32-6 | Industrial Safety and Health Act      |  |  |
| nitrogen [N]                        | 7727-37-9 | Industrial Safety and Health Act      |  |  |
| aluminium [Al]                      | 7429-90-5 | Industrial Safety and Health Act      |  |  |

7. Assumptions of secondary data used

We use the IDEA2.1.3 database. Additionally, scrap primary units (Scrap LCI) are based on the primary unitregistration number: JP-AJ-0001.

## 8. Remarks

1. Additional information

Following Steel grade standards and Dimensional standards are available in addition to the standards listed on page 1:

1) In Japan

• Steel grade standards:

JIS G 3136 (SN400A, SN400B, SN400C, SN490B, SN490C)

JIS G 3106 (SM400A, SM490A, SM490B)

JIS G 3101 (SS400)

2) Other than Japan

Steel grade standards:

ASTM A36, A572 Gr50, A992, EN10025-2 S235JR/J0/J2, S275JR/J0/J2, S355JR/J0/J2/K2, S460J0,

EN10225-2 S355MLO

 $\cdot$  dimensional standards:

ASTM:H152.1(t5.84)XB152.1(t6.6)~H1091.9(t77.98)XB454.4(t124.71)

BS:UB:H203.2(t5.4)XB101.8(t9.3)~H1055.9(t35.9)X420.5(t64.0)

BS:UC:H152.4(t5.8)XB152.2(t6.8)~H474.6(t47.6)X424.0(t77.0)

HE · IPE:H200(t5.6)XB100(t8.5)~H1008(t21.0)X307(t40.0)

- For data quantification, please refer to the PCR and the Rules on Quantification and Declaration.

- Comparative assertion is permitted only when the Rules on Quantification and Declaration are satisfied. (Reference URL : https://ecoleaf-label.jp/regulation/)

Registration number : JR-AJ-24049E