Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp

NIPPON STEEL | NIPPON STEEL CORPORATION

Die Forgings (Heat treated)

Crankshafts for passenger cars

Registration number: JR-AW-24032E

Crankshafts for trucks and buses

Front axle beams

Landing gear for aircraft

Functional unit

1 t

System boundary

final products intermediate products

Production Stage and optional supplementary infomation

Main specifications of the product

Production sites: Kansai Works(Wakayama,Osaka)

Products: Crankshafts, Front axle beams, Aircraft parts

Main standards:

ISO9001,IATF16949,JISQ9100

Main sizes(unit mm L length)

Crankshafts: L 300-3000mm (<2000kg) Front axle beams: L 700-2000mm(<150kg)

Registration# JR-AW-24032E PCR number PA-180000-AW-05 PCR name Steel products except for construction use Publication date 11/29/2024 Verification date 09/12/2024 Verification method Product-by-product Verification# JV-AW-24032 Expiration date 09/11/2029 PCR review was conducted by: Approval date 05/10/2023 Yasunari Matsuno PCR review panel chair (Chiba University)

Company Information

NIPPON STEEL CORPORATION

Third party verifier*

Hiroyuki Uchida

Independent verification of data & declaration in accordance with ISO14025

internal

external

https://www.nipponsteel.com/en/product/railway-automotive-machinery-parts/

*Auditor's name is stated if system certification has been performed.

Registration number: JR-AW-24032E

Registration number: JR-AW-24032E

Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp

1. Results of life cycle impact assessment (LCIA)

Stage Parameter	(1)+(2)+(3)	(1)+(2)	Unit
Global warming IPCC2013 GWP100a	3000	4200	kg-CO₂eq
Acidification	2.0	3.8	kg-SO₂eq
Eutrophication	0.057	0.079	kg-PO ₄ 3-eq

stage						
Parameter	Unit	(1)+(2)	(1)	(2)		(3)
Global warming IPCC2013 GWP100a	kg-CO₂eq	4.2E+03	8.9E+02	3.3E+03		-1.2E+03
Ozone layer destruction	kg-CFC-11eq	3.2E-06	2.2E-07	3.0E-06		-2.1E-07
Acidification	kg-SO₂eq	3.8E+00	9.0E-01	2.9E+00		-1.8E+00
Photochemical ozone	kg-C₂H₄eq	6.0E-02	9.7E-03	5.1E-02		-2.5E-01
Eutrophication	kg-PO ₄ 3-eq	7.9E-02	1.6E-05	7.9E-02		-2.2E-02

2. Life cycle inventory analysis (LCI)			
Parameter		Unit	
Non-renewable material resources	1.3E+03	kg	
Non-renewable energy	5.0E+04	MJ	
Renewable material resources	1.9E+03	kg	
Renewable primary energy	-1.2E+03	MJ	
Consumption of freshwater	4.8E+00	m³	

3. Material composition			
Material		Unit	
Fe	95.0	%	
С	1.10	%	
Si	3.00	%	
Mn	3.00	%	
Р	0.050	%	
S	0.050	%	

4. Waste to disposal		
Parameter		Unit
Hazardous waste	0.00E+00	kg
Non-hazardous waste.	1.6E+00	kg

^{*}Data derived from LCA and not assigned to the impact categories of LCIA

5. Additional explanation

- 1. Each LCI includes allocation for scrap recycling as an optional supplementary information(3) at table.1. Recycling rate (RR) used in this calculation is 93.7% (calculated based on ISO 20915/JIS Q20915 and using Japan data in 2022 from Japan Iron and SteelFederation and Japan Steel Can Recycling Association).
- 2. Scenarios of transport to site follow the PCR.
- 3. Each item (except iron) in table 3 is the maximum value of all product standards covered by this EPD.However, the iron content in each product is never less than 95%, and the contents of other components are adjusted.
- 4. Primary data collected in 2022. The source of the unit power consumption is the average of 10 electric power suppliers of Japan in 2014.
- 5. For the transport of metallurgical coal, the amount is double counted due to the characteristics of the inventory database on which this estimation is based.

Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp

6-1. Supplementary environmental information

Each production site is certified to ISO 14001.

Registration number: JR-AW-24032E

6-2. Regulated hazardous substances			
Substance	CAS No.	Reference to standards or regulations	
Manganese [Mn]	7439-96-5	Industrial Safety and Health Act	
Cupper [Cu]	7440-50-8	Industrial Safety and Health Act	
Nickel [Ni]	7440-02-0	Industrial Safety and Health Act	
Aluminum [Al]	7429-90-5	Industrial Safety and Health Act	
Ferrovanadium	12604-58-9	Industrial Safety and Health Act	

7. Assumptions of secondary data used

The IDEA2.1.3 data and steel scrap data(JP-AJ-0001) from the Japan Iron and Steel Federation are used.

8. Remarks		
_		

- For data quantification, please refer to PCR and Rules on quantification and declaration.
- Comparative assertion is permitted only when Rules on quantification and declaration are satisfied. (Reference URL: https://ecoleaf-label.jp/regulation/)

Registration number: JR-AW-24032E