

Japan EPD Program by SuMPO Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

## NIPPON STEEL | NIPPON STEEL CORPORATION

# Titanium Wire Rod [TranTixxii®-Eco]



from titanium ingots containing at least 50% titanium scrap.



Glasses Frame (photo courtesy of Yamauchi Matex)

Mug handle [Snow Peak]





| Functional unit                                                                           |                            | Registration#                                                | JR-BZ-24004E         |                                |
|-------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------|----------------------|--------------------------------|
| 1t                                                                                        |                            | PCR number                                                   | PA-201590-BZ-03      |                                |
|                                                                                           |                            | PCR name                                                     | Titanium produ       | cts                            |
| System boundary                                                                           |                            | Publication date                                             | 1/10/2025            |                                |
| final products                                                                            | intermediate products      | Verification date                                            | 12/2/2024            |                                |
| Production Stage(Raw material supply,Transport,Manufacturing)                             |                            | Verification method                                          | Product-by-product   |                                |
|                                                                                           |                            | Verification#                                                | JV-BZ-24004          |                                |
|                                                                                           |                            | Expiration date                                              | 12/1/2029            |                                |
| Main specifications of the product<br>Production sites : East Nippon Works , Kyushu Works |                            | PCR review was conducted by:                                 |                      |                                |
|                                                                                           |                            | Approval date                                                | 9/1/2023             |                                |
| Main standards : JIS H4650,H4670 , ASTM B348,B863                                         |                            | PCR review                                                   | Ken Yamagishi        |                                |
|                                                                                           |                            | panel chair                                                  | Sustainable Manag    | ement Promotion Organization   |
| NIPPON STEEL original See Table 8.Remarks for details.                                    |                            | Third party verifier*                                        |                      |                                |
| Type : Wire rod coil                                                                      |                            |                                                              | Takahiro Atoh        |                                |
|                                                                                           |                            | Independent verification of data & declaration in accordance |                      |                                |
| Main sizes(unit:mm,Φd                                                                     | liameter) Φ=6.0 ~ 15.5     | with ISO14025                                                |                      |                                |
| Company Informa<br>NIPPON STEEL CORPORA                                                   | tion<br>πιον               |                                                              | internal             | external                       |
| https://www.pippops                                                                       | tool.com/on/product/titan/ | *Auditor's name is a                                         | stated if system cer | tification has been performed. |

https://www.nipponsteel.com/en/product/titan/

Registration number: JR-BZ-24004E

#### SuMPO SuMPO EPD Type III Environmental Declaration (EPD) IED

## Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

### Registration number: JR-BZ-24004E

| 1. Results of life cycle impact assessment (LCIA)                                                              |                       |                         |                          |         |               |                     |        |
|----------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|--------------------------|---------|---------------|---------------------|--------|
|                                                                                                                |                       |                         | 0%                       | 20% 4   | 10% 60        | 0% 809              | % 100% |
| Global warming IPCC2013 GWP100a                                                                                | 9.7E+03               | kg-CO <sub>2</sub> eq   |                          | 68%     |               | 1. <mark>4</mark> % | 31%    |
| Acidification                                                                                                  | 5.6E+00               | kg-SO <sub>2</sub> eq   |                          | 58%     | 8             | . <mark>2%</mark> 3 | 4%     |
| Eutrophication                                                                                                 | 3.3E-01               | kg-PO4 <sup>3-</sup> eq | 2 <mark>%</mark><br>0.0% |         | 98%           |                     |        |
| <ul> <li>[A1]</li> <li>[A2] Transportation</li> <li>[A3] Manufacturing<br/>Raw material acquisition</li> </ul> |                       |                         |                          |         |               |                     |        |
| stage                                                                                                          |                       |                         | [A1]                     | [A2]    | [A3]          |                     |        |
| Parameter                                                                                                      | Unit                  | Total                   | acquisition              | n n     | Manufacturing |                     |        |
| Global warming IPCC2013 GWP100a                                                                                | kg-CO <sub>2</sub> eq | 9.7E+03                 | 6.5E+03                  | 1.4E+02 | 3.0E+03       |                     |        |
| Ozone layer destruction                                                                                        | kg-CFC-11eq           | 2.6E-03                 | 1.6E-03                  | 1.1E-09 | 1.0E-03       |                     |        |

3.2E+00

1.1E-01

5.2E-03

| 2. Life cycle inventory analysis (LCI) |         |                |  |
|----------------------------------------|---------|----------------|--|
| Parameter                              |         | Unit           |  |
| Renewable energy resources             | 4.1E+03 | MJ             |  |
| Non-renewable energy resources         | 1.5E+05 | MJ             |  |
| Renewable material resources           | 3.3E+02 | kg             |  |
| Non-renewable material resources       | 6.7E+02 | kg             |  |
| Consumption of freshwater              | 3.9E+01 | m <sup>3</sup> |  |

kg-SO<sub>2</sub>eq

kg-C<sub>2</sub>H<sub>4</sub>eq

kg-PO43-eq

5.6E+00

1.8E-01

3.3E-01

| 3. Material composition |       |      |  |
|-------------------------|-------|------|--|
| Material                |       | Unit |  |
| Ti                      | 99    | %    |  |
| С                       | 0.08  | %    |  |
| н                       | 0.015 | %    |  |
| 0                       | 0.40  | %    |  |
| N                       | 0.05  | %    |  |
| Fe                      | 0.50  | %    |  |

1.9E+00

7.1E-02

3.2E-01

| 4. Waste to disposal                                                     |         |      |  |
|--------------------------------------------------------------------------|---------|------|--|
| Parameter                                                                |         | Unit |  |
| Hazardous waste                                                          | 0.0E+00 | kg   |  |
| Non-hazardous waste.                                                     | 3.6E+02 | kg   |  |
| *Data derived from LCA and not assigned to the impact categories of LCIA |         |      |  |

\*The above values are for pure titanium

4.6E-01

8.4E-04

9.7E-13

Acidification

Eutrophication

Photochemical ozone

1. Scenarios of transport to site follow the PCR.For the transportation of coke and inter-factory transportation for intermediate products, distances were measured using mapping software. For titanium scrap transportation, 500km of the PCR scenario was selected. Transport of titanium ore and synthetic rutile are included in the inventory database on which this estimation is based, so those are not included in [A2] transport in 1. Resulst of life cycle impact assessment .

2. Primary data collected in 2022. The source of the unit power consumption is the average of 10 electric power suppliers of Japan in 2014.

Each production area has ISO 14001 certificate.

| 6-2. Regulated hazardous substances |         |                                       |  |
|-------------------------------------|---------|---------------------------------------|--|
| Substance                           | CAS No. | Reference to standards or regulations |  |
| -                                   |         |                                       |  |



Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

Registration number : JR-BZ-24004E

7. Assumptions of secondary data used

The IDEA2.1.3 data is used. IDEAv2.3 is used for titanium ore and synthetic rutile

#### 3. Remarks

ONIPPON STEEL Grade

Super-TIX®800N, Super-TIX®51AF, Super-TIX®523AFM, SSAT®-2041CF

OAbout TranTixxii<sup>®</sup>-Eco

By adding more than 50% titanium scrap as the raw material for titanium ingots, CO2 emission is significantly reduced in the smelting process.

- For data quantification, please refer to PCR and Rules on quantification and declaration.

- Comparative assertion is permitted only when Rules on quantification and declaration are satisfied. (Reference URL : https://ecoleaf-label.jp/regulation/)

Registration number: JR-BZ-24004E