

NIPPON STEEL | NIPPON STEEL CORPORATION

Welded Steel Tubes and Pipes for Boilers and Heat Exchangers

Functional unit

1 t

System boundary

□ final products

■ intermediate products

Production Stage and optional supplementary information

Main specifications of the product

Production sites : East Nippon Works

Main standards :

STB340, STB410, STB510, STBA22, A178/SA-178

NIPPON STEEL original standard S-TEN®1, CR1A

Sizes : outside diameter : 19.05mm \sim 114.3mm

thicknes : 1.65mm \sim 8.13mm

Company Information

NIPPON STEEL CORPORATION Specialty Tubular Products Marketing Dept. Energy Tubular Products Marketing Div. Pipe and Tube Unit https://www.nipponsteel.com

Registration#	JR-AW-24045E		
PCR number	PA-180000-AW-05		
PCR name	Steel products except for construction use		
Publication date	3/10/2025		
Verification date	2/19/2025		
Verification method	Product-by-product		
Verification#	JV-AW-24045		
Expiration date	2/18/2030		
PCR review was conducted by:			
Approval date	5/10/2023		
PCR review	Yasunari Matsuno		
panel chair	(Chiba University)		

Third party verifier*

Kazuo Naito

Independent verification of data & declaration in accordance with ISO14025

□internal

external

 $\ensuremath{^*}\xspace{Auditor}\xspace{Audit$

Registration number : JR-AW-24045E

SuMPO EPD

Japan EPD Program by SuMPO

Sustainable Management Promotion Organization Type III Environmental Declaration (EPD) 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan

Registration number : JR-AW-24045E

https://ecoleaf-label.jp

1. Results of	life cvc	le impa	t assessme	nt (I CTA)
TI ICOULO UI		ac impu		

Stage Parameter	[A1~A3] + [D]	[A1~A3]	Unit	Table Legend 【A1】: Raw mterial supply
Global warming IPCC2013 GWP100a	1600	2800	kg-CO ₂ eq	<pre>[A2]: Transport to factor [A3]: Manufacturing</pre>
Acidification	0.16	2.1	kg-SO₂eq	[D]: Recycling potentia [A1~A3]: sum of [A1] gate) [A1~A3]+[D]: sum of (cradle to gate with allo
Eutrophication	0.015	0.038	kg-PO ₄ ³⁻ eq	

sport to factory ufacturing ling potential sum of [A1], [A2] and [A3] (cradle to [D]: sum of [A1], [A2], [A3] and [D]

ate with allocation for scrap recycling)

stage Parameter	Unit	[A1~A3]	[A1]	[A2]	[A3]	[D]
Global warming IPCC2013 GWP100a	kg-CO₂eq	2.8E+03	5.6E+02	6.3E+01	2.2E+03	-1.2E+03
Ozone layer destruction	kg-CFC-11eq	2.0E-06	6.6E-07	4.2E-10	1.3E-06	-2.2E-07
Acidification	kg-SO₂eq	2.1E+00	5.1E-01	6.2E-02	1.5E+00	-1.9E+00
Photochemical ozone	kg-C₂H₄eq	2.1E-02	5.0E-03	1.1E-03	1.5E-02	-2.6E-01
Eutrophication	kg-PO₄³-eq	3.8E-02	1.3E-05	3.7E-13	3.8E-02	-2.3E-02

2. Life cycle inventory analysis (LCI)			
Parameter		Unit	
Non-renewable material resources	6.3E+02	kg	
Non-renewable energy resources	3.2E+04	MJ	
Renewable material resources	1.0E+03	kg	
Renewable primary energy	6.3E+01	MJ	
Consumption of freshwater	4.4E+00	m ³	

3. Material composition				
Material		Unit		
Fe	≧90.0	%		
С	≦0.32	%		
Si	≦0.80	%		
Mn	≦1.60	%		
Р	≦0.035	%		
S	≦0.035	%		
Cr	≦1.25	%		
Мо	≦0.65	%		

4. Waste to disposal Parameter Unit Hazardous waste 0.0E+00 kg Non-hazardous waste. 2.3E+00 kg

*Data derived from LCA and not assigned to the impact categories of LCIA

5. Additional explanation

1. Each LCI includes allocation for scrap recycling as an optional supplementary information(D) at table.1. Recycling rate (RR) used in this calculation is 93.7% (calculated based on ISO 20915/JIS Q20915 and using Japan data in 2022 from Japan Iron and Steel Federation and Japan Steel Can Recycling Association).

2. Scenarios of transport to site follow the PCR. However, the loading rate for scrap transport uses the default value.

3. Each item (expect iron) in table 3 is the maximum value of all product standards covered by this EPD. However, the iron content in each product is never less than 90%, and the contents of other components are adjusted.

4. Primary data collected in 2022. The source of the unit power consumption is the average of 10 electric power suppliers of Japan in 2014.

5. For metallurgical coal and alloys, the inventory data include transport, so the transport of these items is not counted.

SuMPO EPD

Registration number : JR-AW-24045E

Japan EPD Program by SuMPO Sustainable Management Promotion Organization Type III Environmental Declaration (EPD) 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan

https://ecoleaf-label.jp

6-1. Supplementary environmental information Production site is certified to ISO 14001.

6-2. Regulated hazardous substances				
Substance	CAS No.	Reference to standards or regulations		
Manganese [Mn]	7439-96-5	Industrial Safety and Health Act		
Copper[Cu]	7440-50-8	Industrial Safety and Health Act		
Nickel[Ni]	7440-02-0	Industrial Safety and Health Act		
Aluminum [Al]	7429-90-5	Industrial Safety and Health Act		
Ferrovanadium	12604-58-9	Industrial Safety and Health Act		

7. Assumptions of secondary data used

The IDEA2.1.3 data and steel scrap data(JP-AJ-0001) from the Japan Iron and Steel Federation are used.

8. Remarks

- For data quantification, please refer to PCR and Rules on quantification and declaration.

- Comparative assertion is permitted only when Rules on quantification and declaration are satisfied. (Reference URL : https://ecoleaf-label.jp/regulation/)

Registration number : JR-AW-24045E