# Registration number: JR-AW-24046E

#### SuMPO EPD

Type III Environmental Declaration (EPD)

#### Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp

# NIPPON STEEL | NIPPON STEEL CORPORATION

# High Chrome Ferritic Steel Seamless Tubes and Pipes for the Chemical Industry and Boilers







#### **Functional unit**

1 t

#### **System boundary**

☐ final products ■ intermediate products

Production Stage and optional supplementary information

#### Main specifications of the product

Production sites: Kansai Works (Wakayama, Amagasaki) PCR review was conducted by:

Main standards:

STBA26, STPA26, T9, P9

KA-STBA28, KA-STPA28, T91, T91

KA-STBA29, KA-STPA29, T92, P92

Sizes: outside diameter: 6.0mm~1270.0mm

thicknes: 1.2mm~240.0mm

#### **Company Information**

NIPPON STEEL CORPORATION

Specialty Tubular Products Marketing Dept. Energy Tubular Products Marketing Div.

Pipe and Tube Unit <a href="https://www.nipponsteel.com">https://www.nipponsteel.com</a>

| Registration#       | JR-AW-24046E                               |
|---------------------|--------------------------------------------|
| PCR number          | PA-180000-AW-05                            |
| PCR name            | Steel products except for construction use |
| Publication date    | 3/10/2025                                  |
| Verification date   | 2/19/2025                                  |
| Verification method | Product-by-product                         |
| Verification#       | JV-AW-24046                                |
| Expiration date     | 2/18/2030                                  |

| Approval date | 5/10/2023          |
|---------------|--------------------|
| PCR review    | Yasunari Matsuno   |
| panel chair   | (Chiba University) |

#### Third party verifier\*

Kazuo Naito

Independent verification of data & declaration in accordance with ISO14025

> □internal ■ external

Registration number: JR-AW-24046E

<sup>\*</sup>Auditor's name is stated if system certification has been performed.



#### SuMPO EPD

#### Japan EPD Program by SuMPO

Sustainable Management Promotion Organization Type III Environmental Declaration (EPD) 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp

Registration number: JR-AW-24046E

#### 1. Results of life cycle impact assessment (LCIA)

| Stage Parameter                 | [A1~A3]<br>+ [D] | [A1~A3] | Unit                    |  |
|---------------------------------|------------------|---------|-------------------------|--|
| Global warming IPCC2013 GWP100a | 5600             | 6600    | kg-CO₂eq                |  |
| Acidification                   | 5.2              | 6.7     | kg-SO₂eq                |  |
| Eutrophication                  | 0.21             | 0.23    | kg-PO <sub>4</sub> 3-eq |  |

Table Legend

[A1]: Raw mterial supply

[A2]: Transport to factory

[A3]: Manufacturing

[D]: Recycling potential

 $[A1\sim A3]$ : sum of [A1], [A2] and [A3] (cradle to

gate)

 $[A1 \sim A3] + [D]$ : sum of [A1], [A2], [A3] and [D](cradle to gate with allocation for scrap recycling)

| stage                           |             |         |         |         |         |          |
|---------------------------------|-------------|---------|---------|---------|---------|----------|
| Parameter                       | Unit        | [A1~A3] | [A1]    | [A2]    | [A3]    | [D]      |
| Global warming IPCC2013 GWP100a | kg-CO₂eq    | 6.6E+03 | 2.8E+03 | 6.7E+01 | 3.7E+03 | -9.8E+02 |
| Ozone layer destruction         | kg-CFC-11eq | 7.9E-04 | 7.9E-04 | 4.5E-10 | 3.1E-06 | -1.8E-07 |
| Acidification                   | kg-SO₂eq    | 6.7E+00 | 4.3E+00 | 8.0E-02 | 2.3E+00 | -1.5E+00 |
| Photochemical ozone             | kg-C₂H₄eq   | 1.2E-01 | 4.2E-02 | 1.1E-03 | 7.5E-02 | -2.1E-01 |
| Eutrophication                  | kg-PO₄³-eq  | 2.3E-01 | 6.7E-02 | 4.0E-13 | 1.6E-01 | -1.8E-02 |

| 2. Life cycle inventory analysis (LCI) |         |                |  |
|----------------------------------------|---------|----------------|--|
| Parameter                              |         | Unit           |  |
| Non-renewable material resources       | 1.0E+03 | kg             |  |
| Non-renewable energy resources         | 9.9E+04 | MJ             |  |
| Renewable material resources           | 1.0E+03 | kg             |  |
| Renewable primary energy               | 5.0E+02 | MJ             |  |
| Consumption of freshwater              | 3.8E+01 | m <sup>3</sup> |  |

| 3. Material composition |       |      |
|-------------------------|-------|------|
| Material                |       | Unit |
| Fe                      | ≧80.0 | %    |
| С                       | ≦0.15 | %    |
| Si                      | ≦1.00 | %    |
| Mn                      | ≦0.60 | %    |
| Р                       | ≦0.03 | %    |
| S                       | ≦0.03 | %    |
| Cr                      | ≦10.0 | %    |
| Мо                      | ≦1.10 | %    |

| 4. Waste to disposal |         |      |
|----------------------|---------|------|
| Parameter            |         | Unit |
| Hazardous waste      | 0.0E+00 | kg   |
| Non-hazardous waste. | 2.3E+02 | kg   |

<sup>\*</sup>Data derived from LCA and not assigned to the impact categories of LCIA

#### 5. Additional explanation

- 1. Each LCI includes allocation for scrap recycling as an optional supplementary information(D) at table.1. Recycling rate (RR) used in this calculation is 93.7% (calculated based on ISO 20915/JIS Q20915 and using Japan data in 2022 from Japan Iron and Steel Federation and Japan Steel Can Recycling Association).
- 2. Scenarios of transport to site follow the PCR. However, the loading rate for scrap transport uses the default value.
- 3. Each item (expect iron) in table 3 is the maximum value of all product standards covered by this EPD. However, the iron content in each product is never less than 80%, and the contents of other components are adjusted.
- 4. Primary data collected in 2022. The source of the unit power consumption is the average of 10 electric power suppliers of Japan in 2014.
- 5. For metallurgical coal and alloys, the inventory data include transport, so the transport of these items is not counted.

## Sumpo EPD

### SuMPO EPD

#### Japan EPD Program by SuMPO

Type III Environmental Declaration (EPD) Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan

https://ecoleaf-label.jp

#### 6-1. Supplementary environmental information

Production site is certified to ISO 14001.

Registration number: JR-AW-24046E

| 6-2. Regulated hazard | lous substa | nces                                  |
|-----------------------|-------------|---------------------------------------|
| Substance             | CAS No.     | Reference to standards or regulations |
| Manganese [Mn]        | 7439-96-5   | Industrial Safety and Health Act      |

#### 7. Assumptions of secondary data used

The IDEA2.1.3 data and steel scrap data(JP-AJ-0001) from the Japan Iron and Steel Federation are used.

| 8. Remarks |
|------------|
| _          |
|            |

- For data quantification, please refer to PCR and Rules on quantification and declaration.
- Comparative assertion is permitted only when Rules on quantification and declaration are satisfied. (Reference URL: https://ecoleaf-label.jp/regulation/)

Registration number: JR-AW-24046E