Registration number: JR-AW-24047E

SuMPO EPD

Type III Environmental Declaration (EPD)

Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp

NIPPON STEEL | NIPPON STEEL CORPORATION

Low-alloy Seamless Tubes and Pipes for the Chemical Industry and Boilers

Functional unit

1 t

System boundary

☐ final products ■ intermediate products Production Stage and optional supplementary information

Main specifications of the product

Production sites: Kansai Works (Wakayama)

Main standards:

STBA22, STPA22, T12, P12 STBA24, STPA24, T22, P22

Sizes: outside diameter: 6.0mm~406.4mm

thicknes: 1.2mm~45.0mm

Company Information

NIPPON STEEL CORPORATION Specialty Tubular Products Marketing Dept. Energy Tubular Products Marketing Div. Pipe and Tube Unit

https://www.nipponsteel.com

	Registration#	JR-AW-24047E				
	PCR number	PA-180000-AW-05				
	PCR name	Steel products except for construction use				
P	ublication date	3/10/2025				
Ve	erification date	2/19/2025				
Ve	rification method	Product-by-product				
	Verification#	JV-AW-24047				
Е	xpiration date	2/18/2030				
PC	PCR review was conducted by:					
	Approval date	5/10/2023				
	PCR review panel chair	Yasunari Matsuno (Chiba University)				

Third party verifier*

Kazuo Naito

Independent verification of data & declaration in accordance with ISO14025

> □internal ■ external

Registration number: JR-AW-24047E

^{*}Auditor's name is stated if system certification has been performed.

SuMPO EPD

Japan EPD Program by SuMPO

Sustainable Management Promotion Organization Type III Environmental Declaration (EPD) 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan

Registration number: JR-AW-24047E https://ecoleaf-label.jp

1. Results of life cycle impact assessment (LCIA)

Stage Parameter	[A1~A3] + [D]	[A1~A3]	Unit
Global warming IPCC2013 GWP100a	2900	3900	kg-CO₂eq
Acidification	1.0	2.6	kg-SO₂eq
Eutrophication	0.031	0.050	kg-PO ₄ 3-eq

Table Legend

[A1]: Raw mterial supply

[A2]: Transport to factory

[A3]: Manufacturing

[D]: Recycling potential

 $[A1\sim A3]$: sum of [A1], [A2] and [A3] (cradle to

gate)

 $[A1 \sim A3] + [D]$: sum of [A1], [A2], [A3] and [D](cradle to gate with allocation for scrap recycling)

Parameter stage	Unit	[A1~A3]	[A1]	[A2]	[A3]	[D]
Global warming IPCC2013 GWP100a	kg-CO₂eq	3.9E+03	8.7E+02	8.8E+01	3.0E+03	-1.1E+03
Ozone layer destruction	kg-CFC-11eq	4.8E-06	1.5E-06	5.9E-10	3.3E-06	-1.9E-07
Acidification	kg-SO₂eq	2.6E+00	6.6E-01	9.6E-02	1.9E+00	-1.6E+00
Photochemical ozone	kg-C₂H₄eq	2.7E-02	1.0E-02	1.5E-03	1.5E-02	-2.3E-01
Eutrophication	kg-PO₄³-eq	5.0E-02	7.6E-06	5.3E-13	5.0E-02	-2.0E-02

2. Life cycle inventory analysis (LCI)					
Parameter		Unit			
Non-renewable material resources	9.8E+02	kg			
Non-renewable energy resources	4.6E+04	MJ			
Renewable material resources	1.4E+03	kg			
Renewable primary energy	-7.2E+02	MJ			
Consumption of freshwater	1.5E+01	m ³			

3. Material composition					
Material		Unit			
Fe	≧85.0	%			
С	≦0.35	%			
Si	≦0.50	%			
Mn	≦1.06	%			
Р	≦0.035	%			
S	≦0.035	%			
Cr	≦2.60	%			
Мо	≦1.13	%			

4. Waste to disposal		
Parameter		Unit
Hazardous waste	0.0E+00	kg
Non-hazardous waste.	1.4E+01	kg

*Data derived from LCA and not assigned to the impact categories of LCIA

5. Additional explanation

- 1. Each LCI includes allocation for scrap recycling as an optional supplementary information(D) at table.1. Recycling rate (RR) used in this calculation is 93.7% (calculated based on ISO 20915/JIS Q20915 and using Japan data in 2022 from Japan Iron and Steel Federation and Japan Steel Can Recycling Association).
- 2. Scenarios of transport to site follow the PCR. However, the loading rate for scrap transport uses the default value.
- 3. Each item (expect iron) in table 3 is the maximum value of all product standards covered by this EPD. However, the iron content in each product is never less than 85%, and the contents of other components are adjusted.
- 4. Primary data collected in 2022. The source of the unit power consumption is the average of 10 electric power suppliers of Japan in 2014.
- 5. For metallurgical coal and alloys, the inventory data include transport, so the transport of these items is not

Sumpo EPD

SuMPO EPD

Japan EPD Program by SuMPO

Type III Environmental Declaration (EPD) Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan

Registration number: JR-AW-24047E https://ecoleaf-label.jp

6-1. Supplementary environmental information

Production site is certified to ISO 14001.

6-2. Regulated hazardous substances					
Substance	CAS No.	Reference to standards or regulations			
Manganese [Mn]	7439-96-5	Industrial Safety and Health Act			

7. Assumptions of secondary data used

The IDEA2.1.3 data and steel scrap data(JP-AJ-0001) from the Japan Iron and Steel Federation are used.

8. Remarks			
_			

- For data quantification, please refer to PCR and Rules on quantification and declaration.
- Comparative assertion is permitted only when Rules on quantification and declaration are satisfied. (Reference URL: https://ecoleaf-label.jp/regulation/)

Registration number: JR-AW-24047E