PFU Limited

Ecoleaf Environmental Labeling Program

Sustainable Management Promotion Organization 2-1, Kaji-cho 2 chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

FUJITSU Image Scanner fi-8270

Functional unit

Per product

System boundary

■ final products □intermediate products Raw material acquisition,Production,Distribution, Use & maintenance,End-of-Life

Main specifications of the product

Product name : FUJITSU Image Scanner fi-8270 Product Category : Sheet-fed scanner (With Flat-bed) For Business Scanning Speed : Simplex or Duplex, 70 ppm(140 ipm) Scanning Size : 215.9mm × 355.6mm (8.5in × 14in) Scanning Method : CIS *This product is for United States.

Registration# JR-AI-21130E **PCR number** PA-590000-AI-03 **PCR name** Imaging input and/or output equipment Publication date 1/26/2022 Verification date 11/25/2021 Verification method Product-by-product Verification# JV-AI-21130 Expiration date 11/24/2026 PCR review was conducted by: **Approval date** 11/8/2019 Masayuki Kanzaki PCR review panel chair (SuMPO)

Third party verifier*

Yuki Sakamoto

Independent verification of data & declaration in accordance with ISO14025

□internal ■external

*Auditor's name is stated if system certification has been performed.

Registration number : JR-AI-21130E

Company Information

PFU Limited Imaging Service & Support center E-mail: <u>scanners@pfu.fujitsu.com</u> - Ice

ation nu

EcoLeaf

Ecoleaf Environmental Labeling Program

Type III Environmental Declaration (EPD) Registration number : JR-AI-21130E Sustainable Management Promotion Organization 2-1, Kaji-cho 2 chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

1. Results of life cycle	impact as	sessmen	t (LCIA)				
			0% 2	20% 4	0% 60	% 80%	5 100%
Global warming IPCC2013 GWP100a	210	kg-CO2eq	3	8%	<mark>4%</mark> 9%	47%	2 <mark>%</mark>
Acidification	0.15	kg-SO2eq		40%	<mark>1</mark> % 27%	28	% 4%
Resources consumption	0.022	kg-Sbeq			95%		<mark>0%</mark> 4%0%
Image: state							
stage			Raw material			Use &	
Parameter	Unit	Total	acquisition	Production	Distribution	maintenance	End-of-Life
Global warming IPCC2013 GWP100a	kg-CO ₂ eq	2.1E+02	7.8E+01	9.1E+00	1.8E+01	9.7E+01	3.5E+00
Acidification	kg-SO ₂ eq	1.5E-01	5.9E-02	1.0E-03	3.9E-02	4.0E-02	6.3E-03
Deserves			- ·				

2. Life cycle inventory analysis (LCI)						
項目		単位				
Non-renewable material resources	5.9E+00	kg				
Renewable material resources	1.7E+01	kg				

3. Material composition

Material		Unit
Ordinary steel	2.0E+00	kg
SUS	2.9E-01	kg
Aluminum	1.8E-02	kg
Other metals	8.5E-02	kg
Plastic	4.5E+00	kg
Rubber	2.7E-02	kg
Glass	8.1E-01	kg
Paper and Wood	5.2E+00	kg
Circuit Board	3.0E-01	kg
Others	7.7E-01	kg

EcoLeaf

Type III Environmental Declaration (EPD) Registration number : JR-AI-21130E **Ecoleaf Environmental Labeling Program**

Sustainable Management Promotion Organization 2-1, Kaji-cho 2 chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

5. Additional explanation

Product selected for the scenario used for load calculation - Sheet-fed scanner

Product Destination: United States

Calculation method for the use phase

- -Scans per day: 12,000 sheets/day (5 scans/day)
- -Workdays per month: 20 days/month
- -Working days per year: 240 days/year
- -Expected usage period: 5 years
- -Total scans: 6000 times (14,400,000 sheets)/5 years

6-1. Supplementary environmental information

Compliant with the International Energy Star Program Ver.3.1. It also complies with the European RoHS Directive.

7. Assumptions of secondary data used Inventory Database: IDEA v2.1.3, and registered data of EcoLeaf Environmental Labeling Program, JLCA datav1.10 are used.

8. Remarks

- For data quantification, please refer to PCR and Rules on quantification and declaration.

- Comparative assertion is permitted only when Rules on quantification and declaration are satisfied. (Reference URL : https://ecoleaf-label.jp/regulation/)

Registration number : JR-AI-21130E