

Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp

NIPPON STEEL | NIPPON STEEL CORPORATION

Wide flange shapes

Functional unit

1 t

System boundary

☐ final products

■intermediate products

Production Stage and optional supplementary infomation

Main specifications of the product

Production sites: Kashima ,Kimitsu and Wakayama Works

SN400A,SN400B,SN490B,SM400A,SM400B,SM490A,

SM490B,SM490YA,SM490YB,SS400,SMA400AW,

SMA400BW,SMA490AW,SMA490BW

Type : H-shape

Main sizes(unit:mm,t:thickness) (ex.middle type) $H150(t\ 6)\times B100(t\ 9) \sim H900(t19)\times B400(t37)$ %The other available standards and sizes are listed on page 3 (8.Remarks).

Company Information

NIPPON STEEL CORPORATION

About Us:

https://www.nipponsteel.com/en/index.html

Contact Us:

https://www.nipponsteel.com/en/product/contact/structuralsteel.html

Registration#	JR-AJ-19002E-C	
PCR number	PA-180000-AJ-06	
PCR name	Steel products for construction	
Publication date	12/6/2019	
Verification date	1/12/2024	
Verification method	Product-by-product	
Verification#	JV-AJ-24001	
Expiration date	11/28/2024	
PCR review was conducted by:		
Approval date	5/10/2023	
PCR review	Yasunari Matsuno	
panel chair	(Chiba University)	

Third party verifier*

Yasuo Koseki

Independent verification of data & declaration in accordance with ISO14025 and ISO21930.

□internal	■ externa
-----------	-----------

Registration number: JR-AJ-19002E-C

^{*}Auditor's name is stated if system certification has been performed.

Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp

1. Results of life cycle impact assessment (LCIA)

Stage Parameter	[A1~A3] + [D]	[A1~A3]	Unit
Global warming IPCC2013 GWP100a	1200	2300	kg-CO2eq
Acidification	0.18	2.0	kg-SO2eq
Photochemical ozone	-0.13	0.12	kg-C2H4eq

Table Legend

[A1]: Raw mterial supply [A2]: Transport to factory [A3]: Manufacturing

[D]: Recycling potential

 $[A1 \sim A3]$:sum of [A1], [A2] and [A3] (cradle to gate) $[A1 \sim A3] + [D]$: sum of [A1], [A2], [A3] and [D] (cradle to gate with allocation for scrap recycling)

stage						
Parameter	Unit	[A1~A3]	[A1]	[A2]	[A3]	[D]
Global warming IPCC2013 GWP100a	kg-CO₂eq	2.3E+03	5.4E+02	1.1E+02	1.7E+03	-1.2E+03
Ozone layer destruction	kg-CFC-11eq	4.2E-07	2.4E-07	7.1E-10	1.9E-07	-2.1E-07
Acidification	kg-SO₂eq	2.0E+00	5.7E-01	6.4E-02	1.3E+00	-1.8E+00
Photochemical ozone	kg-C₂H₄eq	1.2E-01	5.1E-03	1.0E-03	1.1E-01	-2.5E-01
Eutrophication	kg-PO ₄ 3-eq	5.6E-02	6.2E-03	6.4E-13	5.0E-02	-2.1E-02

2. Life cycle inventory analysis (LCI) **Parameter** Unit kg Non-renewable material resources 7.3E+02 Non-renewable energy resources 2.6E+04 MJ Renewable material resources kg 9.5E+02 Renewable primary energy -1.1E+01 MJ Consumption of freshwater 8.8E-01

3. Material composition		
Material		Unit
iron [Fe]	≥94.96	%
carbon [C]	≦0.26	%
silicon [Si]	≦0.65	%
manganese [Mn]	≦1.70	%
phosphorus [P]	≦0.05	%
sulfur [S]	≦0.05	%
copper [Cu]	≦0.60	%
chrominium [Cr]	≦0.75	%
nickel [Ni]	≦0.50	%
molybdenum [Mo]	≦0.15	%
niobium [Nb]	≦0.05	%
vanadium [V]	≦0.15	%
titanium [Ti]	≦0.04	%
nitrogen [N]	≦0.03	%
aluminium [Al]	≦0.06	%

4. Waste to disposal		
Parameter		Unit
Hazardous waste	0.00E+00	kg
Non-hazardous waste.	3.50E+00	kg

^{*}Data derived from LCA and not assigned to the impact categories of LCIA $\,$

5. Additional explanation

- 1. Each LCI includes allocation for scrap recycling as an optional supplementary information [D]. Recycling rate (RR) used in this calculation is 93.1% (calculated based on ISO 20915/JIS Q 20915 and using Japan data from Japan Iron and Steel Federation and Japan Steel Can Recycling Association).
- 2. Scenarios of transport to site follow the PCR.
- 3. Each item (except iron) in table 3 is the maximum value

Type III Environmental Declaration (EPD)

Registration number: JR-AJ-19002E-C

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp

6-1. Supplementary environmental information

Kashima Works, Kimitsu works and Wakayama Works are certified to ISO 14001.

6-2. Regulated hazardous substances				
Substance	CAS No.	Reference to standards or regulations		
manganese [Mn]	7439-96-5	Industrial Safety and Health Act		
copper [Cu]	7440-50-8	Industrial Safety and Health Act		
chrominium [Cr]	7440-47-3	Industrial Safety and Health Act		
nickel [Ni]	7440-02-0	Industrial Safety and Health Act		
molybdenum [Mo]	7439-98-7	Industrial Safety and Health Act		
niobium [Nb]	7440-03-1	Industrial Safety and Health Act		
vanadium [V]	7440-62-2	Industrial Safety and Health Act		
titanium [Ti]	7440-32-6	Industrial Safety and Health Act		
nitrogen [N]	7727-37-9	Industrial Safety and Health Act		
aluminium [Al]	7429-90-5	Industrial Safety and Health Act		

7. Assumptions of secondary data used

We use the IDEA2.1.3 data and steel scrap data from The Japan Iron and Steel Federation (JISF).

8. Remarks

1. Additional information

Following Steel grade standards, Sizes and Dimensional standards are available in addition to the standards listed on page 1:

- 1) In Japan
- · Steel grade standards: SN400C, SN490C
- · Sizes:

wide type/ $H100(t6) \times B100(t8) \sim H400(t45) \times B400(t70)$ narrow type/ $H150(t5) \times B75(t7) \sim H600(t11) \times B200(t17)$

- 2) Other than Japan
- Steel grade standards: ASTM A36, A572 Gr50, A992, EN10025-2 S235JR/J0/J2, S275JR/J0/J2, S355JR/J0/J2/K2, S460J0, EN10225-2 S355MLO
- · dimensional standards:

$$\label{eq:astm:h152.1} \begin{split} \text{ASTM}: & \text{H152.1}(t5.84) \times \text{B152.1}(t6.6) \sim \text{H1091.9}(t77.98) \times \text{B454.4}(t124.71) \\ \text{BS:UB}: & \text{H203.2}(t5.4) \times \text{B101.8}(t9.3) \sim \text{H1055.9}(t35.9) \times \text{420.5}(t64.0) \\ \text{BS:UC}: & \text{H152.4}(t5.8) \times \text{B152.2}(t6.8) \sim \text{H474.6}(t47.6) \times \text{424.0}(t77.0) \end{split}$$

 ${\sf HE \cdot IPE: H200(t5.6)XB100(t8.5)} {\sim} {\sf H1008(t21.0)X307(t40.0)}$

- 2. Change log
- Addition of overseas steel grade standards and dimensional standards and updated information on Material composition(table 3) and Regulated hazardous substances(table 6-2).(March 31, 2022)
- · January 2024; Modification about allocation method of by-product gases.
- May 2024; Correction of overseas steel grade standards.
- For data quantification, please refer to the PCR and the Rules on Quantification and Declaration.
- Comparative assertion is permitted only when the Rules on Quantification and Declaration are satisfied. (Reference URL : https://ecoleaf-label.jp/regulation/)

Registration number: JR-AJ-19002E-C