

NIPPON STEEL | NIPPON STEEL CORPORATION

NSHYPER BEAMTM

Functional unit

1 t

System boundary

□ final products ■intermediate products

Production Stage and optional supplementary infomation

Main specifications of the product

Production sites : Kashima and Wakayama Works Main standards : SN400A,SN400B,SN490B,SM400A,SM400B,SM490A,SM490B, SM490YA,SM490YB,SS400,NSYP345B,NSYP385B Type : H-shape Main sizes(unit:mm,t:thickness)

H400(t 9) × B200(t12)~H1,200(t22) × B500(t40) %The other available standards and sizes are listed on page 3 (8.Remarks).

Company Information

NIPPON STEEL CORPORATION

About Us: https://www.nipponsteel.com/en/index.html Contact Us: https://www.nipponsteel.com/en/product/contact/structuralsteel.html

Registration#	JR-AJ-19003E-D	
PCR number	PA-180000-AJ-06	
PCR name	Steel products for construction	
Publication date	12/6/2019	
Verification date	01/12/2024	
Verification method	Product-by-product	
Verification#	JV-AJ-24002	
Expiration date	01/11/2029	
PCR review was conducted by:		
Approval date	05/10/2023	
PCR review	Yasunari Matsuno	
panel chair	Chiba University	

Third party verifier*

Yasuo Koseki

Independent verification of data & declaration in accordance with ISO14025 and ISO21930.

□internal

external

*Auditor's name is stated if system certification has been performed.

Registration number : JR-AJ-19003E-D

Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

Sumpo EPD

Type III Environmental Declaration (EPD)

Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

Registration number : JR-AJ-19003E-D

1. Results of life cycle impact assessment (LCIA)

Stage Parameter	[A1~A3] + [D]	[A1~A3]	Unit	
Global warming IPCC2013 GWP100a	1400	2600	kg-CO2eq	 [A1]: Naw interial supply [A2]: Transport to factory [A3]: Manufacturing [D]: Recycling potential [A1~A3]:sum of [A1].[A2]and[A3](cradle to g
Acidification	0.10	1.8	kg-SO2eq	
Photochemical ozone	0.65	0.89	kg-C2H4eq	

stage						
Parameter	Unit	【A1~A3】	[A1]	[A2]	[A3]	[D]
Global warming IPCC2013 GWP100a	kg-CO ₂ eq	2.6E+03	6.3E+02	1.2E+02	1.8E+03	-1.1E+03
Ozone layer destruction	kg-CFC-11eq	2.3E-06	1.7E-07	7.9E-10	2.2E-06	-2.0E-07
Acidification	kg-SO ₂ eq	1.8E+00	5.3E-01	6.7E-02	1.2E+00	-1.7E+00
Photochemical ozone	kg-C₂H₄eq	8.9E-01	4.8E-03	1.0E-03	8.8E+00	-2.4E-01
Eutrophication	kg-PO ₄ ³⁻ eq	4.1E-02	3.7E-05	7.1E-13	4.1E-02	-2.1E-02

2. Life cycle inventory analysis (LCI)			
Parameter		Unit	
Non-renewable material resources	9.0E+02	kg	
Non-renewable energy resources	3.0E+04	MJ	
Renewable material resources	8.9E+02	kg	
Renewable primary energy	9.7E+02	MJ	
Consumption of freshwater	3.9E+00	m ³	

3. Material composition			
Material		Unit	
iron [Fe]	≧95.51	%	
carbon [C]	≦0.26	%	
silicon [Si]	≦0.55	%	
manganese [Mn]	≦1.65	%	
phosphorus [P]	≦0.05	%	
sulfur [S]	≦0.05	%	
copper [Cu]	≦0.60	%	
chrominium [Cr]	≦0.36	%	
nickel [Ni]	≦0.50	%	
molybdenum [Mo]	≦0.15	%	
niobium [Nb]	≦0.05	%	
vanadium [V]	≦0.15	%	
titanium [Ti]	≦0.04	%	
nitrogen [N]	≦0.02	%	
aluminium [Al]	≦0.06	%	

4. Waste to disposal			
Parameter		Unit	
Hazardous waste	0.00E+00	kg	
Non-hazardous waste.	2.03E+00	kg	

5. Additional explanation

1. Each LCI includes allocation for scrap recycling as an optional supplementary information [D]. Recycling rate (RR) used in this calculation is 93.1% (calculated based on ISO 20915/JIS Q 20915 and using Japan data from Japan Iron and Steel Federation and Japan Steel Can Recycling Association).

2. Scenarios of transport to site follow the PCR.

3. Each item (except iron) in table 3 is the maximum value of the standards of the products.

4. The average grid power supply of 10 electric power suppliers of Japan in 2014 is used in the LCI calculation for grid electricity.

*Data derived from LCA and not assigned to the impact categories of LCIA

Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

Registration number : JR-AJ-19003E-D

6-1. Supplementary environmental information Kashima Works and Wakayama Works are certified to ISO 14001.

6-2. Regulated hazardous substances			
Substance	CAS No.	Reference to standards or regulations	
manganese [Mn]	7439-96-5	Industrial Safety and Health Act	
copper [Cu]	7440-50-8	Industrial Safety and Health Act	
chrominium [Cr]	7440-47-3	Industrial Safety and Health Act	
nickel [Ni]	7440-02-0	Industrial Safety and Health Act	
molybdenum [Mo]	7439-98-7	Industrial Safety and Health Act	
niobium [Nb]	7440-03-1	Industrial Safety and Health Act	
vanadium [V]	7440-62-2	Industrial Safety and Health Act	
titanium [Ti]	7440-32-6	Industrial Safety and Health Act	
nitrogen [N]	7727-37-9	Industrial Safety and Health Act	
aluminium [Al]	7429-90-5	Industrial Safety and Health Act	

7. Assumptions of secondary data used

We use the IDEA2.1.3 data and steel scrap data from The Japan Iron and Steel Federation (JISF).

8. Remarks

1. Additional information

Following Steel grade standards are available in addition to the standards listed on page 1: 1) In Japan

• Steel grade standards: SN400C,SN490C,SMA400AW,SMA400BW,SMA490AW,SMA490BW

2) Other than Japan

• Steel grade standards: ASTM A36, A572 Gr50, A992, EN10025-2 S235JR/J0/J2, S275JR/J0/J2, S355JR/J0/J2/K2, EN10225-2 S355MLO

2. Change log

• 3/17/2020 The spec of main sizes has been changed by adding larger sizes(MEGA NSHYPER BEAMTM)

• Addition of overseas steel grade standards and dimensional standards and updated information on Material composition(table 3) and Regulated hazardous substances(table 6-2).(March 31, 2022)

· January 2024; Modification about allocation method of by-product gases

• May 2024; Correction of overseas steel grade standards. Addition Japanese steel grade NSYP385B.

- For data quantification, please refer to the PCR and the Rules on Quantification and Declaration.

- Comparative assertion is permitted only when the Rules on Quantification and Declaration are satisfied. (Reference URL : https://ecoleaf-label.jp/regulation/)

Registration number : JR-AJ-19003E-D