Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

TOKYO ROPE MFG. CO., LTD. な東京製鋼株式會社

Parallel Wire Cable with HDPE sheathing are produced by bundling many galvanized wires and coating with high density polyethylene at the plant.

Parallel Wire Cable with HDPE sheathing

Parallel Wire Cable with HDPE sheathing

Functional unit

1t

System boundary

- □ final products ■intermediate products
 - Production Stage and optional supplementary information

Main specifications of the product

Production site :Tsuchiura PlantMain standards :JIS G3571, JSS II

ISO 19203, ISO 19427

Galvanized wire diameter :

5mm (min. 4.5mm) \sim 7mm (max. 7.5mm) Number of wires per strand : 19 \sim 499wires

Type : Coil

Company Information

TOKYO ROPE MFG. CO., LTD.

tokyorope.co.jp

Registration#	JR-AX-23006E-A		
PCR number	PA-180000-AX-05		
PCR name	Steel products with secondary processing for construction		
Publication date	9/19/2023		
Verification date	date 4/15/2024		
Verification method	d Product-by-product		
Verification#	JV-AX-24004		
Expiration date	4/14/2029		
PCR review was	conducted by:		
Approval date	5/10/2023		
PCR review	Yasunari Matsuno		
panel chair	Chiba University		
Third party verifie	er*		

Third party verifier*

Yuki Sakamoto

Independent verification of data & declaration in accordance with ISO14025 and ISO21930.

□internal ■external

*Auditor's name is stated if system certification has been performed.

Registration number : JR-AX-23006E-A

EcoLeaf

Type III Environmental Declaration (EPD) Registration number : JR-AX-23006E-A

Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

1. Results of life cycle impact assessment (LCIA)

Stage Parameter	[A1~A3] + [D]	[A1~A3]	Unit
Global warming IPCC2013 GWP100a	2600	3900	kg-CO₂eq
Acidification	0.50	2.50	kg-SO₂eq
Eutrophication	-0.0057	0.018	kg-PO ₄ ³ -eq

Table Legend [A1]: Raw mterial supply [A2]: Transport to factory [A3]: Manufacturing [D]: Recycling potential [A1~A3]:sum of [A1], [A2] and [A3] (cradle to gate)

[A1~A3]+[D]: sum of [A1],[A2],[A3]and [D]

(cradle to gate with allocation for scrap recycling)

Unit	【A1~A3】	[A1]	[A2]	[A3]		[D]
kg-CO ₂ eq	3.9E+03	2.5E+03	1.1E+01	1.3E+03		-1.3E+03
kg-CFC-11eq	4.1E-04	1.5E-07	9.1E-11	4.1E-04		-2.4E-07
kg-SO ₂ eq	2.5E+00	1.6E+00	2.9E-02	8.8E-01		-2.0E+00
kg-C₂H₄eq	4.4E-02	1.7E-02	5.2E-05	2.6E-02		-2.8E-01
kg-PO ₄ ³⁻ eq	1.8E-02	1.8E-02	7.7E-14	1.0E-04		-2.4E-02
	kg-CO ₂ eq kg-CFC-11eq kg-SO ₂ eq kg-C ₂ H ₄ eq	kg-CO2eq 3.9E+03 kg-CFC-11eq 4.1E-04 kg-SO2eq 2.5E+00 kg-C2H4eq 4.4E-02	kg-CO2eq 3.9E+03 2.5E+03 kg-CFC-11eq 4.1E-04 1.5E-07 kg-SO2eq 2.5E+00 1.6E+00 kg-C2H4eq 4.4E-02 1.7E-02	kg-CO2eq3.9E+032.5E+031.1E+01kg-CFC-11eq4.1E-041.5E-079.1E-11kg-SO2eq2.5E+001.6E+002.9E-02kg-C2H4eq4.4E-021.7E-025.2E-05	kg-CO2eq3.9E+032.5E+031.1E+011.3E+03kg-CFC-11eq4.1E-041.5E-079.1E-114.1E-04kg-SO2eq2.5E+001.6E+002.9E-028.8E-01kg-C2H4eq4.4E-021.7E-025.2E-052.6E-02	kg-CO2eq3.9E+032.5E+031.1E+011.3E+03kg-CFC-11eq4.1E-041.5E-079.1E-114.1E-04kg-SO2eq2.5E+001.6E+002.9E-028.8E-01kg-C2H4eq4.4E-021.7E-025.2E-052.6E-02

2. Life cycle inventory analysis (LCI)			
Parameter		Unit	
Non-renewable material resources	9.4E+02	kg	
Non-renewable energy resources	4.7E+04	MJ	
Renewable material resources	1.2E+03	kg	
Renewable primary energy	-3.8E+02	MJ	
Consumption of freshwater	3.7E+00	m ³	

3. Material composition			
Material		Unit	
iron [Fe]	≧83.0	%	
carbon [C]	≦1.00	%	
silicon [Si]	≦3.00	%	
manganese [Mn]	≦3.00	%	
phosphorus [P]	≦0.050	%	
sulfur [S]	≦0.050	%	
zinc [Zn]	≦2.50	%	
aluminum [Al]	≦0.13	%	
high density polyethylene	≦10	%	

4. Waste to disposal			
Parameter		Unit	
Hazardous waste	0.0E+00	kg	
Non-hazardous waste.	7.0E+00	kg	

*Data derived from LCA and not assigned to the impact categories of LCIA

5. Additional explanation

1) This base material is Wire rod made by Nippon Steel(Ecoleaf registration No.: JR-AJ-21009E-A). 2) Because this product is secondary processing product, the indirect effect is evaluated about the base material.Each LCI includes allocation for scrap recycling as an optional supplementary information [D] at table.1. Recycling rate (RR) used in this calculation is 93.0% (calculated based on ISO 20915/JIS Q20915 and using Japan data in 2018 from Japan Iron and Steel Federation and Japan Steel Can Recycling Association). 3) Transport distance between Nippon Steel (East Nippon Works Kimitsu Area) and Tokyo Rope Mfg. Co., Ltd. (Tsuchiura Plant) is measured by geographic software. 4) Each item (expect iron) in table 3 is the maximum value of all product standards covered by this EPD. However, the iron content in each product is never less than 83.0%, and the contents of other components are adjusted.

5) Primary data was collected for one year within 2018-2020. The source of the unit power consumption is the average of 10 electric power suppliers of Japan in 2014.

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

6-1. Supplementary environmental information Tsuchiura Plant has ISO 14001 certificate.

6-2. Regulated hazardous substances			
Substance	CAS No.	Reference to standards or regulations	
manganese [Mn]	7439-96-5	Industrial Safety and Health Act	
copper [Cu]	7440-50-8	Industrial Safety and Health Act	

7. Assumptions of secondary data used

We use the IDEA v2.1.3 data and steel scrap data(JP-AJ-0001) from the Japan Iron and Steel Federation.

8. Remarks

4/19/2024; Modification about Ecoleaf registration No. of the base material (Wire rod made by Nippon Steel)

- For data quantification, please refer to PCR and Rules on quantification and declaration.
- Comparative assertion is permitted only when Rules on quantification and declaration are satisfied. (Reference URL : https://ecoleaf-label.jp/regulation/)

Registration number : JR-AX-23006E-A