ECO LEAF 製品環境情報

EcoLeaf

Type III Environmental Declaration (EPD)

Registration number : JR-AI-23316E

Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

A3 Color Production Printer for DTP

ApeosPro C650

FUJ:FILM Value from Innovation

富士フイルム ビジネス イノベーション株式会社 FUJIFILM Business Innovation Corp.

Apeos, Apeos logo and ApeosPlus are registered trademarks or trademarks of FUJIFILM Business Innovation Corp. in Japan and/or other countries.

Functional unit

Per unit of product

System boundary

■ final products □ intermediate products
Raw material acquisition, Production, Distribution,
Use & Maintenance, End-of-Life

Main specifications of the product

- Model: ApeosPro C650
- Color Multifunction Printer (EP Type)
- Print Speed (A4 LEF): Color 65ppm, Monochrome 65ppm
- Paper Size (Max.): A3、11×17″
- Copy / Print / Scan / Fax
- Automatic 2 Sided Output, Automatic Document Feeder

Company Information

FUJIFILM Business Innovation Corp.

6-1 Minatomirai, Nishi-ku, Yokohama-shi, Kanagawa Japan

https://www.fujifilm.com/fbglobal/eng

Registration#	JR-AI-23316E				
PCR number	PA-590000-AI-08				
PCR name	Imaging input and/or output equipment				
Publication date	12/6/2023				
Verification date	11/20/2023				
Verification method	System certificaion				
Verification#	2023-FB-EL-036				
Expiration date	11/19/2028				
PCR review was conducted by:					
Approval date	9/1/2023				
PCR review	Masayuki Kanzaki				
panel chair	Sustainable Management Promotion Organization				
Third party verifier*					
	Sachiko Hashizume				

Independent verification of data & declaration in accordance with ISO14025

external

*Auditor's name is stated if system certification has been performed.

Registration number : JR-AI-23316E

□internal

EcoLeaf

Type III Environmental Declaration (EPD)

Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

Registration number : JR-AI-23316E

1. Results of life cycle	impact as	ssessmer	nt (LC	IA)				
			0%	20	1% 4	10% 60	0% 80	% 100%
Global warming IPCC2013 GWP100a	2800	kg-CO2eq			60%	1	. <mark>%</mark> 3% 29	% <mark>6%</mark>
Acidification	2.2	kg-SO2eq			59%	08	<mark>6 8%</mark> 25	% 8%
Resources consumption	1.4	kg-Sbeq				83%		<mark>0%</mark> 17% 0%
Image: Constraint of the second se								tenance
stage Parameter	Unit	Total	Raw ma acquis		Production	Distribution	Use & maintenance	End-of-Life
Global warming IPCC2013 GWP100a	kg-CO ₂ eq	2.8E+03	1.7E	+03	4.1E+01	8.5E+01	8.3E+02	1.6E+02
Acidification	kg-SO ₂ eq	2.2E+00	1.3E·	+00	6.2E-03	1.8E-01	5.5E-01	1.7E-01
Resources consumption	kg-Sbeq	1.4E+00	1.2E	+00	1.9E-04	3.6E-04	2.4E-01	3.3E-04

2. Life cycle inventory analysis (LCI)						
Parameter		Unit				
Non-renewable material resources	2.7E+02	kg				
Renewable material resources	5.5E+02	kg				

3. Material composition					
Material		Unit			
Steel	130	kg			
SUS	5.8	kg			
Alminium	2.0	kg			
Other Metals	16	kg			
Plastic	59	kg			
Rubber	0.90	kg			
Glass	2.3	kg			
Paper, Wood	19	kg			
Circuit Board	8.1	kg			
Conversion Parts	18	kg			
Others	4.7	kg			

5. Additional explanation

✓ Product destination: Japan

 \checkmark Calculated based on standard scenario for MFP (EP type).

 \checkmark Printing paper is excluded from Use & maintenance stage.

✓ Electric power of Use & maintenance stage is calculated based on TEC value, measured according to ENERGY STAR[®] Version 3.0.

✓ Assumed print volume are 633,600 sheets.

 $1/4 \times 32$ (jobs per day) x 66 (sheets per job) x 5 (days) x 4 (weeks) x 12 (months) x 5 (years) = 633,600 (sheets)

EcoLeaf

Type III Environmental Declaration (EPD)

Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

Registration number : JR-AI-23316E

6-1. Supplementary environmental information ENERGY STAR® Ver.3.0 qualified.

7. Assumptions of secondary data used

Inventory Database: LCI Database IDEA v2.1.3, Japan EPD Program by SuMPO registered data v1.14.

8. Remarks

- For data quantification, please refer to PCR and Rules on quantification and declaration.

- Comparative assertion is permitted only when Rules on quantification and declaration are satisfied. (Reference URL : https://ecoleaf-label.jp/regulation/)

Registration number : JR-AI-23316E