
Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

NIPPON STEEL

Hot-dip galvanized and aluminium alloy coating sheets

Functional unit

1 t

System boundary

☐ final products ■ intermediate products

Main specifications of the product

Production sites:

East Nippon Works, Nagoya Works

Setouchi Works, Kyushu Works

Main standards:

JIS(Japanese Industrial Standards),

NIPPON STEEL standards

For details, please refer to "8. Remarks" in EL sheet 2.

Shape: Coil and sheet

Main thickness (unit: mm, t:=thickness) : $t = 0.27 \sim 9.0$

Company Information

NIPPON STEEL CORPORATION

Flat Products Unit Flat Products Planning Dept.

https://www.nipponsteel.com/

Registration#	JR-AW-22004E-A	
PCR number	PA-180000-AJ-06	
PCR name	Steel products (except for construction use)	
Publication date	4/21/2022	
Verification date	1/19/2024	
Verification method	Product-by-product	
Verification#	JV-AW-24013	
Expiration date	3/17/2027	
PCR review was conducted by:		
Approval date	5/10/2023	
PCR review	Yasunari Matsuno	
panel chair	(Chiba University)	

Third party verifier*

Tomoko Fuchigami

Independent verification of data & declaration in accordance with ISO14025

□internal
■ external

Registration number: JR-AW-22004E-A

^{*}Auditor's name is stated if system certification has been performed.

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

1. Results of life cycle impact assessment (LCIA)

Domain of influence	Manufacturing + Indirect impact*1	Manufacturing only*2	Unit
Global warming IPCC2013 GWP100a	1200	2500	kg-CO₂eq
Acidification	-0.25	1.7	kg-SO₂eq
Eutrophication	0.010	0.033	kg-PO₄³-eq

^{*1:}the total of (1) to (3), *2:the total of (1) to (2)

stage Parameter	Unit	(1)to (2)	(1)raw material procurement	(2)product manufacture		(3)indirect impacts
Global warming IPCC2013 GWP100a	kg-CO₂eq	9.0E+02	6.2E+02	1.5E+03		-1.2E+03
Ozone layer destruction	kg-CFC-11eq	5.9E-08	1.3E-07	1.5E-07		-2.2E-07
Acidification	kg-SO₂eq	3.3E-01	6.2E-01	1.6E+00		-1.9E+00
Photochemical ozone	kg-C ₂ H₄eq	-2.4E-01	5.9E-03	1.2E-02		-2.6E-01
Eutrophication	kg-PO ₄ 3-eq	2.0E-02	4.9E-03	3.8E-02		-2.2E-02

2. Life cycle inventory analysis (LCI)			
Item		Unit	
Non-renewable material resources	7.5E+02	kg	
Non-renewable energy resources	3.1E+04	MJ	
Renewable material resources	1.1E+03	kg	
Renewable primary energy	3.4E+02	MJ	
Consumption of freshwater	3.7E+00	m ³	

4. Waste to disposal			
Parameter		Unit	
Hazardous waste	-	kg	
Non-hazardous waste.	2.3E+00	kg	
Treated MSW for landfill	0.0E+00	kg	
Treated industrial waste for landfill	2.3E+00	kg	

3. Material composition		
Material		Unit
iron [Fe]	≧84.0	%
carbon [C]	≦3.00	%
silicon [Si]	≦3.00	%
manganese [Mn]	≦0.050	%
phosphorus [P]	≦0.050	%
sulfur [S]	≦0.050	%
zinc [Zn]	≦15.00	%
aluminum [Al]	≦4.00	%

5. Additional explanation

① Each LCI includes allocation for scrap recycling as an optional supplementary information [End-of-Life]. The indirect effect is added to the total value in Tables [Raw material acquisition], [Production] and [Distribution].

Recyclingrate (RR) used in this calculation is 93.0%

(calculated based on ISO 20915/JIS Q 20915 standards and using FY 2018 data from Japan Steel Can Recycling Association and Tetsugen Association).

- ② Material transport scenariois based on PCR.
- ③ Each item (expect iron) in table 3 is the maximum value of all product standards covered by this EPD. However, the iron content in each product is never less than 95%, and the contents of other components are adjusted.
- ④ Primary data collected in 2018. The source of the unit power consumption is the average of 10 electric power suppliers of Japan in 2014.
- ⑤ For the transport of metallurgical coal, the amount is double counted in Tables [Raw material acquisition] and [Distribution] due to the characteristics of the consumption rate database on which this estimation is based.
- © Each value of the results shown in this sheet is the mean value for Hot-dip Galvanized and Aluminized Steel Sheets.

^{*}Data derived from LCA and not assigned to the impact categories of LCIA $\,$

EcoLeaf Type III Environmental Declaration (EPD) Registration number: JR-AW-22004E-A

Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

6-1. Supplementary environmental information

East Nippon Works, Nagoya Works, Setouchi Works, Kyushu Works have ISO 14001 certificates.

6-2. Regulated hazardous substances		
Substance	CAS No.	Reference to standards or regulations
manganese [Mn]	7439-96-5	Industrial Safety and Health Act

7. Assumptions of secondary data used

We use the IDEA v2.1.3 data and steel scrap data(JP-AJ-0001) from the Japan Iron and Steel Federation.

8. Remarks

Typical Type of JIS:

- JIS G 3302 Hot-dip galvanized steel sheet and strip/Hot-dip galvannealed steel sheet and strip: Commercial (e.g.:SGCC,SGHC), Drawing(e.g.:SGCD1),Structural(e.g.:SGC340,SGH340), Commercial,Hard (e.g.:SGCH), Deep drawing(e.g.:SPCE)
- JIS G 3323 Hot-dip zinc-aluminum-magnesium-silicon alloy-coated steel sheet and strip: For general use (e.g.:SGMCC,SGMHC), For hard class general use (e.g.:SGMCH), For drawing use (e.g.:SGMCD1), For high-strength general use (e.g.:SGMC340,SGMH340)
- \cdot JIS G 3314 Hot-dip aluminum-coated steel sheet and strip : Heat resistance (e.g.:SA1C)

Typical Type of NIPPON STEEL standards:

- Hot-dip galvanized steel sheet and strip/Hot-dip galvannealed steel sheet and strip:
 Commercial (e.g.:NSGCC,NSACC,NSGHC,NSAHC), Commercial automotive use (e.g.:NSAH270C),
 Drawing (e.g.:NSGC270D, NSAC270E,NSGH270D, NSAH270D),Structural (e.g.:NSGC340,NSGH340)
 Drawing,high-strength (e.g.:NSGC340R, NSAC340R), Deep drawing,high-strength (e.g.:NSGC340E,
 NSAC340E), Commercial,Hard (e.g.:NSAC340, NSAH340),Automotive,high strength (e.g.:NSAC590N)
 High burring,high strength (e.g.:NSAC440B,NSAH440B),Low yield ratio,high strength (e.g.:NSSQA1500),
 For use in steel pipes (e.g.:NSGHT270,NSAHT270),Commercial automotive,high strength (e.g.:NSAH310N),Automotive,drawing,high strength (e.g.:NSAH490R)
- Hot-dip zinc-aluminum-magnesium-silicon alloy-coated steel sheet and strip:
 For general uses (e.g.:NSDCC,NSDHC,MSMCC,MSMHC), For drawing use (e.g.:NSDCD1, NSDHP1, MSMCD,MSMHD), For structural use (e.g.:NSDC340, NSDH340, MSMCK370, MSMHK370),
 For architecture structural use (e.g:MSMCK400K,MSMHK400K)
- Hot-dip aluminum-coated steel sheet and strip: Heat resistance (e.g.:NSA1C),
 Colorfastness at high temperature (e.g.:NSA1D-P), High strength(TS=440 class) (e.g.:NSA440R),
 Hot stamp (e.g.:NSSQAS1500)
- $\boldsymbol{\cdot}$ January 2024; Modification about allocation method of by-product gases
- For data quantification, please refer to PCR and Rules on quantification and declaration.
- Comparative assertion is permitted only when Rules on quantification and declaration are satisfied. (Reference URL: https://ecoleaf-label.jp/regulation/)

Registration number: JR-AW-22004E-A