Japan EPD Program by SuMPO Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

Wire Rod (Products in Sendai)

Functional unit

Steel Bar & Wire Rod Division

Contact us: https://www.jfe-steel.co.jp/en/contact.html

PCR number PA-180000-AW-05 1 metric ton PCR name Steel products (except for construction use) System boundary **Publication date** 1/15/2024 □ final products ■ intermediate products Verification date 11/21/2023 Verification method Product-by-product Production Stage (Raw material acquisition and Transportation to factory, manufucturing) Verification# JV-AW-23022 and Indirect effect Expiration date 11/20/2028 Main specifications of the product PCR review was conducted by: Production Site: Sendai Works Approval date 5/10/2023 **Representative Standards:** Yasunari Matsuno PCR review SC, SCR, SCM, SGD, SUM, SWRCH, SWRH, panel chair (Chiba University) SWRS Third party verifier* Shape: Wire Rod Takahiro Atoh Size range (mm): Independent verification of data & declaration in Φ5.5 - Φ18 accordance with ISO14025 **Company Information** □internal external JFE Steel Corporation Planning & Marketing Dept.,

Registration#

About us: https://www.jfe-steel.co.jp/en/index.html

Registration number : JR-AW-23022E

JR-AW-23022E

EcoLeaf

Type III Environmental Declaration (EPD)

Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

Registration number : JR-AW-23022E

1. Results of life c	vcle impact asse	ssment (LCIA)

Parameter	[A1, A3]	Unit
Global warming IPCC2013 GWP100a	1.0E+03	kg-CO₂eq
Acidification	5.8E-01	kg-SO ₂ eq
Eutrophication	3.3E-03	kg-PO ₄ ³⁻ eq

stage Parameter	Unit	Total	[A1] Raw material acquisition and Transportation to factory	[A3] Manufacturing		[D] Indirect effect
Global warming IPCC2013 GWP100a	kg-CO ₂ eq	1.0E+03	2.4E+02	7.6E+02	-	3.4E+02
Ozone layer destruction	kg-CFC-11eq	2.2E-07	1.7E-07	5.7E-08	-	6.1E-08
Acidification	kg-SO ₂ eq	5.8E-01	2.6E-01	3.2E-01	-	5.2E-01
Photochemical ozone	kg-C ₂ H ₄ eq	1.6E-02	1.7E-03	1.5E-02	-	7.3E-02
Eutrophication	kg-PO ₄ ³⁻ eq	3.3E-03	4.9E-06	3.3E-03	-	6.2E-03

2. Life cycle inventory analysis (LCI)		
Parameter		Unit
Non-renewable material resources	2.3E+01	kg
Non-renewable energy resources	1.6E+04	MJ
Renewable material resources	1.3E+01	kg
Renewable primary energy	2.9E+02	MJ
Consumption of freshwater	1.7E+00	m ³

3. Material composition		
Material		Unit
Iron [Fe]	84.2	wt%
Carbon [C]	1.10	wt%
Silicon [Si]	3.00	wt%
Manganese [Mn]	3.00	wt%
Phosphorus [P]	0.15	wt%
Sulfur [S]	0.45	wt%
Copper [Cu]	0.60	wt%
Nickel [Ni]	4.00	wt%
Chromium [Cr]	2.50	wt%
Molybdenum [Mo]	1.00	wt%

4. Waste to disposal		
Parameter		Unit
Hazardous waste	0.0E+00	kg
Non-hazardous waste.	8.4E-01	kg

*Data derived from LCA and not assigned to the impact categories of LCIA

EcoLeaf

Type III Environmental Declaration (EPD)

Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

Registration number : JR-AW-23022E

5. Additional explanation

 \cdot The indirect effect (scrap recycling potential) is calculated based on ISO 20915/JIS Q 20915 and shown as [D]Iindirect effect in table "1. Results of life cycle impact assessment (LCIA)".

The indirect effect is added to the total value (sum of [A1], [A3]) in tables.

• Recycling ratio used in this calculation is 93.0% (calculated based on ISO 20915/JIS Q 20915 and using FY 2018 data from The Japan Iron and Steel Federatin, The Japan Steel Can recycling Association and The Japan ferrous raw materials

association).

- The source of unit power consumption is the average of 10 electric power suppliers of Japan in 2014.
- Primary data collected in 2021.

• Each item (except iron) in table 3 is the maximum value of all product standards covered by this EPD.

6-1. Supplementary environmental information The production site is certified to ISO 14001.

6-2. Regulated hazardous substances		
Substance	CAS No.	Reference to standards or regulations
Copper [Cu]	7440-50-8	Industrial Safety and Health Act
Manganese [Mn]	7439-96-5	Industrial Safety and Health Act
Nickel [Ni]	7440-02-0	Act on the Assessment of Releases of Specified Chemical Substances
Chromium [Cr]	7440-47-3	in the Environment and the Promotion of Management Improvement
Molybdenum [Mo]	7439-98-7	*
Lead [Pb]	7439-92-1	*

7. Assumptions of secondary data used

IDEA v2.1.3 database is used. Steel scrap data (JP-AJ-0001) from the Japan Iron and Steel Federation are used.

8. Remarks

- For data quantification, please refer to PCR and Rules on quantification and declaration.

- Comparative assertion is permitted only when Rules on quantification and declaration are satisfied. (Reference URL : https://ecoleaf-label.jp/regulation/)

Registration number : JR-AW-23022E