
Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

Color Coated Steel Sheets (for construction)

Coating Structure (representative example)

Functional unit

1 t

System boundary

☐ final products ■ intermediate products

Main specifications of the product

Production sites:

Setouchi Works

Main standards:

NIPPON STEEL standards

For details, please refer to "8. Remarks" in EL sheet 2.

Shape: Coil and sheet

Main thickness (unit: mm, t:=thickness):

 $t = 0.3 \sim 1.2$

Company Information

NIPPON STEEL CORPORATION

Flat Products Unit Flat Products Planning Dept. https://www.nipponsteel.com/

Registration#	JR-AJ-22005E-A	
PCR number	PA-180000-AJ-06	
PCR name	Steel products for construction	
Publication date	4/21/2022	
Verification date	1/19/2024	
Verification method	Product-by-product	
Verification#	JV-AJ-24019	
Expiration date	3/17/2027	
PCR review was conducted by:		
Approval date	5/10/2023	

Third party verifier*

PCR review

panel chair

Tomoko Fuchigami

Yasunari Matsuno

(Chiba University)

Independent verification of data & declaration in accordance with ISO14025 and ISO21930

□internal ■ external

Registration number: JR-AJ-22005E-A

 $^{{}^{*}}$ Auditor's name is stated if system certification has been performed.

Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

1. Results of life cycle impact assessment (LCIA)

Stage Parameter	[A1~A3] + [D]	[A1~A3]	Unit
Global warming IPCC2013 GWP100a	2000	3100	kg-CO₂eq
Acidification	0.44	2.2	kg-SO₂eq
Eutrophication	0.027	0.048	kg-PO₄³-eq

Table Legend

[A1]: Raw mterial supply [A2]: Transport to factory

[A3]: Manufacturing

[D]: Recycling potential

[A1 \sim A3]: sum of [A1],[A2] and [A3] (cradle to

gate)

[A1~A3]+[D]: sum of [A1],[A2],[A3] and [D] (cradle to gate with allocation for scrap recycling)

stage	11	[44 42]	[44]	[AD]	[AD]	(5)
Parameter	Unit	[A1~A3]	[A1]	[A2]	[A3]	[D]
Global warming IPCC2013 GWP100a	kg-CO₂eq	3.1E+03	4.4E+02	1.3E+02	2.5E+03	-1.1E+03
Ozone layer destruction	kg-CFC-11eq	2.1E-05	1.1E-07	8.3E-10	2.1E-05	-2.1E-07
Acidification	kg-SO₂eq	2.2E+00	5.0E-01	6.5E-02	1.6E+00	-1.7E+00
Photochemical ozone	kg-C ₂ H ₄ eq	2.2E-02	4.5E-03	9.9E-04	1.7E-02	-2.4E-01
Eutrophication	kg-PO ₄ 3-eq	4.8E-02	1.2E-03	7.5E-13	4.7E-02	-2.1E-02

2. Life cycle inventory analysis (LCI)			
項目		単位	
Non-renewable material resources	6.0E+02	kg	
Non-renewable energy resources	3.7E+04	MJ	
Renewable material resources	1.1E+03	kg	
Renewable primary energy	-3.7E+02	MJ	
Consumption of freshwater	6.4E-01	m ³	

4. Waste to disposal		
Parameter		Unit
Hazardous waste	-	kg
Non-hazardous waste.	2.1E+00	kg

3. Material composition		
Material		Unit
iron [Fe]	≥95.0	%
carbon [C]	≦1.10	%
silicon [Si]	≦3.00	%
manganese [Mn]	≦3.00	%
phosphorus [P]	≦0.050	%
sulfur [S]	≦0.050	%
zinc [Zn]	≦5.00	%

5. Additional explanation

① Each LCI includes allocation for scrap recycling as an optional supplementary information [End-of-Life]. The indirect effect is added to the total value in Tables [Raw material acquisition], [Production] and [Distribution].

Recyclingrate (RR) used in this calculation is 93.0%

(calculated based on ISO 20915/JIS Q 20915 standards and using FY 2018 data from Japan Steel Can Recycling Association and Tetsugen Association).

- 2 Material transport scenariois based on PCR.
- ③ Each item (expect iron) in table 3 is the maximum value of all product standards covered by this EPD. However, the iron content in each product is never less than 95%, and the contents of other components are adjusted.
- ④ Primary data collected in 2018. The source of the unit power consumption is the average of 10 electric power suppliers of Japan in 2014.
- ⑤ For the transport of metallurgical coal, the amount is double counted in Tables [Raw material acquisition] and [Distribution] due to the characteristics of the consumption rate database on which this estimation is based.
- ⑥ Each value of the results shown in this sheet is the mean value for Color Coated Steel Sheets.

^{*}Data derived from LCA and not assigned to the impact categories of LCIA

Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

6-1. Supplementary environmental information

Setouchi Works has ISO 14001 certificates.

6-2. Regulated hazardous substances		
Substance	CAS No.	Reference to standards or regulations
manganese [Mn]	7439-96-5	Industrial Safety and Health Act

7. Assumptions of secondary data used

We use the IDEA v2.1.3 data and steel scrap data(JP-AJ-0001) from the Japan Iron and Steel Federation.

8. Remarks

<The details about Main standards>

Typical Type of Base Sheet and Symbols (NIPPON STEEL standards):

Base Sheet:Hot-dip galvanised steel sheet and strip …e.g.:PNSGCC-1SN,CGCC

Base Sheet:Hot-dip galvannealed steel sheet and strip …e.g.:PNSACC-1SN

Base Sheet:Hot-dip zinc-aluminium-magunesium alloy-coated steel sheet and strip...e.g.:PNSDCC-1SN

Base Sheet:Cold-rolled steel sheet and strip...e.g.:PNSCC-1SN

Base Sheet: Electrogalvanised steel sheet and strip...e.g.: PNSECC-1SN

- · January 2024; Modification about allocation method of by-product gases
- For data quantification, please refer to PCR and Rules on quantification and declaration.
- Comparative assertion is permitted only when Rules on quantification and declaration are satisfied. (Reference URL : https://ecoleaf-label.jp/regulation/)

Registration number: JR-AJ-22005E-A