
Grain-Oriented Electrical Steel Sheets

# NIPPON STEEL | NIPPON STEEL CORPORATION







## **Functional unit**

#### 1 t

## System boundary

 $\Box$  final products

■ intermediate products

Production Stage and optional supplementary infomation

## Main specifications of the product

Production sites : Setouchi Works, Kyushu Works

Main standards : NIPPON STEEL Grade (ZH,ZDKH etc.) See Table 8.Remarks for details.

Type : Coil, Hoop, Sheet Main sizes (unit: mm, t: thickness) t=0.15~0.35

## **Company Information**

#### NIPPON STEEL CORPORATION

https://www.nipponsteel.com/en/product/sheet/list/

| Registration#                | JR-AW-22020E-A                             |  |  |
|------------------------------|--------------------------------------------|--|--|
| PCR number                   | PA-180000-AW-05                            |  |  |
| PCR name                     | Steel products except for construction use |  |  |
| Publication date             | 11/25/2022                                 |  |  |
| Verification date            | 01/10/2024                                 |  |  |
| Verification method          | Product-by-product                         |  |  |
| Verification#                | JV-AW-24004                                |  |  |
| Expiration date              | 10/24/2027                                 |  |  |
| PCR review was conducted by: |                                            |  |  |
| Approval date                | 05/10/2023                                 |  |  |
| PCR review                   | Yasunari Matsuno                           |  |  |
| panel chair                  | (Chiba University)                         |  |  |
| Third party vorifior*        |                                            |  |  |

# Third party verifier\*

Tetsuya Okuyama

Independent verification of data & declaration in accordance with ISO14025

□internal

external

 $\ensuremath{^*}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Auditor}\xspace{Audit$ 

Registration number : JR-AW-22020E-A



## EcoLeaf

Registration number : JR-AW-22020E-A

## Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp

| 1. RESULS OF THE LYCE INDUCT ASSESSMENT (LC. | 1. | <b>Results</b> | of life cvcl | le impact assessment ( | LCIA |
|----------------------------------------------|----|----------------|--------------|------------------------|------|
|----------------------------------------------|----|----------------|--------------|------------------------|------|

| Stage                           | (1)+(2)+(3) | (1)+(2) | Unit                                |
|---------------------------------|-------------|---------|-------------------------------------|
| Global warming IPCC2013 GWP100a | 2800        | 3800    | kg-CO <sub>2</sub> eq               |
| Acidification                   | 0.77        | 2.4     | kg-SO <sub>2</sub> eq               |
| Eutrophication                  | 0.062       | 0.081   | kg-PO <sub>4</sub> <sup>3-</sup> eq |

Table Legend (1)Raw material supply (2)Production (3)Recycling potential

| stage                           |                                     |         |         |         |  |          |
|---------------------------------|-------------------------------------|---------|---------|---------|--|----------|
| Parameter                       | Unit                                | (1)+(2) | (1)     | (2)     |  | (3)      |
| Global warming IPCC2013 GWP100a | kg-CO <sub>2</sub> eq               | 3.8E+03 | 9.3E+02 | 2.9E+03 |  | -1.0E+03 |
| Ozone layer destruction         | kg-CFC-11eq                         | 1.1E-06 | 1.9E-07 | 9.3E-07 |  | -1.9E-07 |
| Acidification                   | kg-SO <sub>2</sub> eq               | 2.4E+00 | 9.0E-01 | 1.5E+00 |  | -1.6E+00 |
| Photochemical oxidant           | kg-C₂H₄eq                           | 3.4E-02 | 1.1E-02 | 2.3E-02 |  | -2.2E-01 |
| Eutrophication                  | kg-PO <sub>4</sub> <sup>3-</sup> eq | 8.1E-02 | 7.8E-04 | 8.0E-02 |  | -1.9E-02 |

| 2. Life cycle inventory analysis (LCI) |         |      |  |  |
|----------------------------------------|---------|------|--|--|
| Parameter                              |         | Unit |  |  |
| Non-renewable material resources       | 5.8E+02 | kg   |  |  |
| Renewable material resources           | 2.1E+03 | kg   |  |  |
| Non-renewable energy resources         | 4.7E+04 | MJ   |  |  |
| Renewable energy resources             | 8.0E+02 | MJ   |  |  |
| Consumption of freshwater              | 1.6E+01 | m³   |  |  |

| 3. Material composition |       |      |  |
|-------------------------|-------|------|--|
| Material                |       | Unit |  |
| Fe                      | ≧90   | %    |  |
| С                       | ≦0.1  | %    |  |
| Si                      | ≦5    | %    |  |
| Mn                      | ≦4    | %    |  |
| Р                       | ≦0.05 | %    |  |
| S                       | ≦0.05 | %    |  |
| Al                      | ≦3    | %    |  |
| Ni                      | ≦4    | %    |  |
| Sn                      | ≦1    | %    |  |
| Cu                      | ≦2    | %    |  |
| Cr                      | ≦0.2  | %    |  |

# 4. Waste to disposal Parameter Unit Hazardous waste kg Non-hazardous waste. 2.1E+00 kg

\* Data derived from LCA are not assigned to the impact categories of LCIA

## 5. Additional explanation

1. Each LCI includes allocation for scrap recycling as an optional supplementary information(3) at table.1. Recycling rate (RR) used in this calculation is 93.0% (calculated based on ISO 20915/JIS Q20915 and using Japan data in 2018 from Japan Iron and Steel Federation and Japan Steel Can Recycling Association).

2. Scenarios of transport to site follow the PCR.

3. Each item (expect iron) in table 3 is the maximum value of all product standards covered by this EPD. However, the iron content in each product is never less than 90%, and the contents of other components are adjusted.

4. Primary data collected in 2018. The source of the unit power consumption is the average of 10 electric power suppliers of Japan in 2014.

5. For the transport of metallurgical coal, the amount is double counted due to the characteristics of the inventory database on which this estimation is based.



## EcoLeaf

Registration number : JR-AW-22020E-A

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp

6-1. Supplementary environmental information Each production area has ISO 14001 certificate.

| 6-2. Regulated hazardous substances |           |                                       |  |  |
|-------------------------------------|-----------|---------------------------------------|--|--|
| Substance                           | CAS No.   | Reference to standards or regulations |  |  |
| Manganese [Mn]                      | 7439-96-5 | Industrial Safety and Health Act      |  |  |
| Nickel [Ni]                         | 7440-02-0 | Industrial Safety and Health Act      |  |  |
| Chromium [Cr]                       | 7440-47-3 | Industrial Safety and Health Act      |  |  |
| Copper [Cu]                         | 7440-50-8 | Industrial Safety and Health Act      |  |  |
| Tin [Sn]                            | 7440-31-5 | Industrial Safety and Health Act      |  |  |

#### **7.** Assumptions of secondary data used

The IDEA2.1.3 data and steel scrap data (JP-AJ-0001) from the Japan Iron and Steel Federation are used.

## 8. Remarks

NIPPON STEEL Grade

ORIENTCORE (e.g. 30Z120, 35Z135), ORIENTCORE·HI-B<sup>™</sup> (e.g. 23ZH85, 27ZH95), ORIENTCORE·HI-B<sup>™</sup>·LS (e.g. 20ZDKH75, 23ZDKH85), ORIENTCORE·HI-B<sup>™</sup>·PM (e.g. 23ZDMH85)

\*January 2024; Modification about allocation method of by-product gases

- For data quantification, please refer to PCR and Rules on quantification and declaration.

- Comparative assertion is permitted only when Rules on quantification and declaration are satisfied. (Reference URL : https://ecoleaf-label.jp/regulation/)

Registration number : JR-AW-22020E-A