Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp

NIPPON STEEL | NIPPON STEEL CORPORATION

Non-Oriented Electrical Steel Sheets

Functional unit

1 t

System boundary

☐ final products ■ intermediate products

Production Stage and optional supplementary infomation

Main specifications of the product

Production sites: Setouchi Works, Kyushu Works

Main standards:

NIPPON STEEL Grade (H, HX etc.) See Table 8.Remarks for details.

Type: Coil, Hoop, Sheet

Main sizes (unit: mm, t: thickness)

t=0.15~0.70

Company Information

NIPPON STEEL CORPORATION

https://www.nipponsteel.com/en/product/sheet/list/

Registration#	JR-AW-22021E-A		
PCR number	PA-180000-AW-05		
PCR name	Steel products except for construction use		
Publication date	11/25/2022		
Verification date	01/10/2024		
Verification method	Product-by-product		
Verification#	JV-AW-24005		
Expiration date	10/24/2027		
PCR review was	conducted by:		
Approval date	05/10/2023		
PCR review	Yasunari Matsuno		
panel chair	(Chiba University)		

Third party verifier*

Tetsuya Okuyama

Independent verification of data & declaration in accordance with ISO14025

□internal ■ external

Registration number: JR-AW-22021E-A

 $^{{}^{*}}$ Auditor's name is stated if system certification has been performed.

Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp

Type III Environmental Declaration (EPD)
Registration number: JR-AW-22021E-A

1. Results of life cycle impact assessment (LCIA)

Stage Parameter Stage	(1)+(2)+(3)	(1)+(2)	Unit
Global warming IPCC2013 GWP100a	1800	2900	kg-CO₂eq
Acidification	0.40	2.0	kg-SO₂eq
Eutrophication	0.057	0.077	kg-PO ₄ ³⁻ eq

Table Legend
(1)Raw material supply
(2)Production
(3)Recycling potential

stage						
Parameter	Unit	(1)+(2)	(1)	(2)		(3)
Global warming IPCC2013 GWP100a	kg-CO₂eq	2.9E+03	7.5E+02	2.2E+03		-1.1E+03
Ozone layer destruction	kg-CFC-11eq	1.2E-06	1.6E-07	1.0E-06		-1.9E-07
Acidification	kg-SO₂eq	2.0E+00	7.7E-01	1.3E+00		-1.6E+00
Photochemical oxidant	kg-C ₂ H ₄ eq	2.2E-02	8.0E-03	1.4E-02		-2.3E-01
Eutrophication	kg-PO ₄ ³⁻ eq	7.7E-02	7.3E-04	7.6E-02		-1.9E-02

2. Life cycle inventory analysis (LCI)		
Parameter		Unit
Non-renewable material resources	5.4E+02	kg
Renewable material resources	1.9E+03	kg
Non-renewable energy resources	3.3E+04	MJ
Renewable energy resources	4.0E+02	MJ
Consumption of freshwater	1.5E+01	m ³

3. Material composition		
Material		Unit
Fe	≥90	%
С	≦0.1	%
Si	≦5	%
Mn	≦4	%
Р	≦0.2	%
S	≦0.05	%
Al	≦3	%
Ni	≦4	%
Sn	≦1	%
Cu	≦2	%

4. Waste to disposal		
Parameter		Unit
Hazardous waste	-	kg
Non-hazardous waste.	1.9E+00	kg

 $^{^{}st}$ Data derived from LCA are not assigned to the impact categories of LCIA

5. Additional explanation

- 1. Each LCI includes allocation for scrap recycling as an optional supplementary information(3) at table.1. Recycling rate (RR) used in this calculation is 93.0% (calculated based on ISO 20915/JIS Q20915 and using Japan data in 2018 from Japan Iron and Steel Federation and Japan Steel Can Recycling Association).
- 2. Scenarios of transport to site follow the PCR.
- 3. Each item (expect iron) in table 3 is the maximum value of all product standards covered by this EPD. However, the iron content in each product is never less than 90%, and the contents of other components are adjusted.
- 4. Primary data collected in 2018. The source of the unit power consumption is the average of 10 electric power suppliers of Japan in 2014.
- 5. For the transport of metallurgical coal, the amount is double counted due to the characteristics of the inventory database on which this estimation is based.

Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp

Type III Environmental Declaration (EPD)

Registration number: JR-AW-22021E-A

6-1. Supplementary environmental information

Each production area has ISO 14001 certificate.

6-2. Regulated hazardous substances		
Substance	CAS No.	Reference to standards or regulations
Manganese [Mn]	7439-96-5	Industrial Safety and Health Act
Nickel [Ni]	7440-02-0	Industrial Safety and Health Act
Chromium [Cr]	7440-47-3	Industrial Safety and Health Act
Copper [Cu]	7440-50-8	Industrial Safety and Health Act
Tin [Sn]	7440-31-5	Industrial Safety and Health Act

7. Assumptions of secondary data used

The IDEA2.1.3 data and steel scrap data (JP-AJ-0001) from the Japan Iron and Steel Federation are used.

8. Remarks

NIPPON STEEL Grade

HILITECORETM (e.g. 35H440, 50H350), HIEXCORETM (e.g. 50HX290, 25HX1400), HIGH TENSILE STRENGTH HILITECORETM (e.g. 35HXT780T), HOMECORETM (e.g. 50H1000, 50H1300), SEMICORE (e.g. 50HS600)

*January 2024; Modification about allocation method of by-product gases

- For data quantification, please refer to PCR and Rules on quantification and declaration.
- Comparative assertion is permitted only when Rules on quantification and declaration are satisfied. (Reference URL: https://ecoleaf-label.jp/regulation/)

Registration number: JR-AW-22021E-A