
Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

Electrogalvanized Steel Sheets

Functional unit

1 t

System boundary

☐ final products ■ intermediate products

Main specifications of the product

Production sites:

East Nippon Works, Setouchi Works

Main standards:

JIS(Japanese Industrial Standards),

NIPPON STEEL standards

For details, please refer to "8. Remarks" in EL sheet 2.

Shape: Coil and sheet

Main thickness (unit: mm, t:=thickness) :

 $t = 0.4 \sim 3.2$

Company Information

NIPPON STEEL CORPORATION

Flat Products Unit Flat Products Planning Dept.

https://www.nipponsteel.com/

Registration#	JR-AW-22009E-A		
PCR number	PA-180000-AW-05		
PCR name	Steel products (except for construction use)		
Publication date	4/21/2022		
Verification date	1/19/2024		
Verification method	Product-by-product		
Verification#	JV-AW-24018		
Expiration date	3/17/2027		
PCR review was conducted by:			
Approval date	5/10/2023		
PCR review	Yasunari Matsuno		
panel chair	(Chiba University)		
Third party varific	~u*		

Third party verifier*

Tomoko Fuchigami

Independent verification of data & declaration in accordance with ISO14025

□internal	■external	

Registration number: JR-AW-22009E-A

 $[\]hbox{*-} \hbox{Auditor's name is stated if system certification has been performed.} \\$

Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

1. Results of life cycle impact assessment (LCIA)

Domain of influence	Manufacturing + Indirect impact*1	Manufacturing only*2	Unit
Global warming IPCC2013 GWP100a	1600	2800	kg-CO₂eq
Acidification	-0.0021	1.9	kg-SO₂eq
Eutrophication	0.017	0.040	kg-PO ₄ 3-eq

*1:the total of (1) to (3), *2:the total of (1) to (2)

stage Parameter	Unit	(1)(0 (2)		(2)product manufacture		(3)indirect impacts
Global warming IPCC2013 GWP100a	kg-CO₂eq	2.8E+03	5.8E+02	2.2E+03		-1.2E+03
Ozone layer destruction	kg-CFC-11eq	1.6E-07	1.2E-07	3.9E-08		-2.2E-07
Acidification	kg-SO₂eq	1.9E+00	7.6E-01	1.1E+00		-1.9E+00
Photochemical ozone	kg-C ₂ H ₄ eq	2.1E-02	6.9E-03	1.4E-02		-2.6E-01
Eutrophication	kg-PO ₄ 3-eq	4.0E-02	1.5E-02	2.5E-02		-2.3E-02

2. Life cycle inventory analysis (LCI)			
項目		単位	
Non-renewable material resources	7.5E+02	kg	
Non-renewable energy resources	3.1E+04	MJ	
Renewable material resources	1.1E+03	kg	
Renewable primary energy	1.6E+02	MJ	
Consumption of freshwater	4.9E+00	m ³	

4. Waste to disposal			
Parameter		Unit	
Hazardous waste	-	kg	
Non-hazardous waste.	1.7E+00	kg	
Treated MSW for landfill	0.0E+00	kg	
Treated industrial waste for landfill	2.8E+00	kg	

3. Material composition			
Material		Unit	
iron [Fe]	≥95.0	%	
carbon [C]	≦1.10	%	
silicon [Si]	≦3.00	%	
manganese [Mn]	≦3.00	%	
phosphorus [P]	≦0.050	%	
sulfur [S]	≦0.050	%	
zinc [Zn]	≦2.00	%	
nickel [Ni]	≦2.00	%	

5. Additional explanation

① Each LCI includes allocation for scrap recycling as an optional supplementary information [End-of-Life]. The indirect effect is added to the total value in Tables [Raw material acquisition], [Production] and [Distribution].

Recyclingrate (RR) used in this calculation is 93.0%

(calculated based on ISO 20915/JIS Q 20915 standards and using FY 2018 data from Japan Steel Can Recycling Association and Tetsugen Association).

- ② Material transport scenariois based on PCR.
- ③ Each item (expect iron) in table 3 is the maximum value of all product standards covered by this EPD. However, the iron content in each product is never less than 95%, and the contents of other components are adjusted.
- Primary data collected in 2018. The source of the unit power consumption is the average of 10 electric power suppliers of Japan in 2014.
- ⑤ For the transport of metallurgical coal, the amount is double counted in Tables [Raw material acquisition] and [Distribution] due to the characteristics of the consumption rate database on which this estimation is based.
- 6 Each value of the results shown in this sheet is the mean value for Electrogalvanized Steel Sheets.

^{*}Data derived from LCA and not assigned to the impact categories of LCIA

Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

6-1. Supplementary environmental information

East Nippon Works and Setouchi Works have ISO 14001 certificates.

6-2. Regulated hazardous substances			
Substance CAS No.		Reference to standards or regulations	
manganese [Mn]	7439-96-5	Industrial Safety and Health Act	

7. Assumptions of secondary data used

We use the IDEA v2.1.3 data and steel scrap data(JP-AJ-0001) from the Japan Iron and Steel Federation.

8. Remarks

<The details about Main standards>

Typical Type of JIS (JIS G 3313):

- Commercial quality (e.g.:SECC,SECCT,SEHC)
- Drawing quality (e.g.:SECD,SEHD)
- Deep Drawing quality (e.g.:SECE,SEHE)
- High-Strength quality for drawing (e.g.:SEFC340,SEPH400)

Typical Type of NIPPON STEEL standards:

- · Commercial quality (e.g.:NSECC,NSEHC)
- Drawing quality (e.g.:NSEC270D,NSEH270D)
- Deep drawing (e.g.:NSEC270E,NSEH270E)
- Extra deep drawin (e.g.:NSEC270F)
- High-Strength quality for automotive forming (e.g.:NSEC390N)
- Bake-hardening quality (e.g.:NSEC340BH)
- High-Strength quality for drawing (e.g.:NSEC340R)
- High-Strength quality for deep drawing (e.g.:NSEC340E)
- High-Strength quality of loe yield ratio-type (e.g.:NSEC490D)
- DUALZINKLITE™ (e.g.:NSNCC,NSNC270D,NSNC340R)
- · ECOTRIO™ (e.g.:ZSNC)
- SUPERNICKEL[™] (e.g.:NTSN)
- · January 2024; Modification about allocation method of by-product gases
- For data quantification, please refer to PCR and Rules on quantification and declaration.
- Comparative assertion is permitted only when Rules on quantification and declaration are satisfied. (Reference URL: https://ecoleaf-label.jp/regulation/)

Registration number: JR-AW-22009E-A