

Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome, Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

NIPPON STEEL CORPORATION

Polymer Laminated TINFREE STEEL

Surface treatment (chromium coating)

Functional unit

1 t

System boundary

Final products

Intermediate products

Production stages (raw material procurement, raw material transport and product manufacture) and indirect impacts

Main specifications of the product

Production sites: Nagoya Works

Main standards: NTPLT

Shape: Coil and sheet

Main thickness (unit: mm, t= thickness)

t = 0.15 to 0.3

Company Information

NIPPON STEEL CORPORATION Tin Mill Products Technology Dept., Tin Mill Products Div. TEL: 03-6867-6558 https://www.nipponsteel.com/

Registration#	JR-AW-20002E-A		
PCR number	PA-180000-AW-05		
PCR name	Steel products (excluding construction), intermediate products		
Publication date	October 26,2020		
Verification date	January 29,2024		
Verification method	Product-by-product		
Verification#	JV-AW-24021		
Expiration date	January 28,2029		
PCR review was conducted by:			
Approval date	May 10,2023		
PCR review	Yasunari Matsuno		
panel chair	(Chiba University)		
Third sector conditions*			

Third party verifier*

Outside verifier: Naoki Makino

Independent verification of data & declaration in accordance with ISO14025

Internal

External

* If the system certification has been performed in the subject business site, the auditor's name is stated.

Registration number: JR-AW-20002E-A

🚺 EcoLeaf

Type III Environmental Declaration (EPD) Registration number: JR-AW-20002E-A

Japan	EPD P	rogram	by Sul	MPO
-------	-------	--------	--------	-----

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome,Chiyoda-ku, Tokyo Japan https://ecoleaf-label.jp/

•

1. Results of life cycle impact assessment	(LCIA)	
--	--------	--

Domain of influence	Manufacturing + Indirect impact*1	Manufacturing only*2	Unit
Climate change IPCC2013 GWP100a	2100	3200	kg(CO ₂ eq)
Acidification	-0.053	1.7	kg(SO ₂ eq)
Eutrophication	0.011	0.032	kg(PO ₄ ³⁻ eq)

Stage Parameter	Unit	Manufacturing Stage total	[A1] Raw material procurement	[A2] Raw material transport	[A3]Manufacturing products	[D] Indirect impact
Climate change IPCC2013 GWP100a	kg-CO ₂ eq	3.2E+03	6.5E+02	1.3E+02	2.5E+03	-1.1E+03
Ozone layer destruction	kg-CFC-11eq	2.7E-05	2.5E-05	8.3E-10	2.1E-06	-2.0E-07
Acidification	kg-SO ₂ eq	1.7E+00	8.0E-01	7.5E-02	7.8E-01	-1.7E+00
Photochemical oxidant	kg-C ₂ H ₄ eq	2.2E-02	6.4E-03	1.2E-03	1.5E-02	-2.4E-01
Eutrophication	kg-PO ₄ ³⁻ eq	3.2E-02	1.0E-02	7.5E-13	2.2E-02	-2.0E-02

2. Life cycle inventory analysis (LCI)		
Parameter		Unit
Non-renewable material resources	7.5E+02	kg
Non-renewable energy resources	3.7E+04	MJ
Renewable material resources	1.5E+03	kg
Renewable primary energy	1.3E+03	MJ
Consumption of freshwater	1.3E+00	m ³

3. Material composition		
Material		Unit
Iron [Fe]	88.9	%
Manganese [Mn]	0.60	%
Nickel [Ni]	0.20	%
Chromium [Cr]	0.10	%
Copper [Cu]	0.20	%
Titanium dioxide [TiO2]	10	%

4. Waste to disposal		
Parameter		Unit
Hazardous waste	0.00E+00	kg
Non-hazardous waste.	2.20E+00	kg
General waste; landfill waste	0.00E+00	kg
Industrial waste; landfill waste	2.20E+00	kg

5. Additional information about the calculation results

(1) Steel material recycling effects were assessed based on JISQ20915 as indirect impacts. Their values are shown in column [D] of the table above. The indirect impacts are added to the total of [A1] to [A3] in the table above.

The recycling rate in this calculation is 93.0%. (The calculation was based on JISQ20915 and used the domestic data of FY2018. (Source: The Japan Iron and Steel Federation, the Japan Ferrous Raw Materials Association, and Japan Steel Can Recycling Association))

(2) Transport to site scenario is based on PCR.

(3) The source of the unit power consumption is the average of 10 electric power suppliers of Japan in 2014.

 $^{\ast}\textsc{Data}$ derived from LCA and not assigned to the impact categories of LCIA

Japan EPD Program by SuMPO

Sustainable Management Promotion Organization 14-8, Uchikanda 1-chome,Chiyoda-ku, Tokyo Japan

https://ecoleaf-label.jp/

Registration number: JR-AW-20002E-A

6-1. Supplementary environmental information

Products are manufactured at an ISO14001 certified Works.

6-2. Regulated hazardous substances				
Substance	CAS No.	Reference to standards or regulations		
Manganese [Mn]	7439-96-5	Article 57-2(1) of the Industrial Safety and Health Act; Class I designated chemical substance by the Law concerning Pollutant Release and Transfer Register		
Nickel [Ni]	7440-02-0	Article 57-2(1) of the Industrial Safety and Health Act; Class I designated chemical substance by the Law concerning Pollutant Release and Transfer Register		
Chromium [Cr]	7440-47-3	Article 57-2(1) of the Industrial Safety and Health Act; Class I designated chemical substance by the Law concerning Pollutant Release and Transfer Register		
Copper [Cu]	7440-50-8	Article 57-2(1) of the Industrial Safety and Health Act		
Tin [Sn]	7440-31-5	Article 57-2(1) of the Industrial Safety and Health Act		

7. Assumptions of secondary data used

The IDEA v2.1.3 data were used. For the scrap primary unit (scrap LCI), the primary unit registration No.: JP-AJ-0001 was used.

8. Remarks

January 2024; Modification about allocation method of by-product gases

- For data quantification, please refer to PCR and Rules on quantification and declaration.

- Comparative assertion is permitted only when Rules on quantification and declaration are satisfied.
 - (Reference URL: https://ecoleaf-label.jp/regulation/)

Registration number: JR-AW-20002E-A